Transformers
HFInference
¶
Class for running HF model inference locally.
Source code in ragfit/models/hf.py
__init__(model_name_or_path: str, torch_dtype, device_map, instruction: Path, instruct_in_prompt: False, template: Path = None, lora_path=None, generation=None, task='text-generation', **kwargs)
¶
Initialize a HF model, with optional LORA adapter.
Parameters:
-
model_name_or_path
(str
) –HF model name or path.
-
torch_dtype
(str
) –torch dtype for the model.
-
device_map
–device map for the model.
-
instruction
(Path
) –path to the instruction file.
-
instruct_in_prompt
(bool
) –whether to include the instruction in the prompt for models without system role.
-
template
(Path
, default:None
) –path to a prompt template file if tokenizer does not include chat template. Optional.
-
lora_path
(Path
, default:None
) –path to the LORA adapter.
-
generation
(dict
, default:None
) –generation kwargs.
-
task
(str
, default:'text-generation'
) –task for the pipeline.
Source code in ragfit/models/hf.py
generate(prompt: str) -> str
¶
Given an input, generate a response.
Source code in ragfit/models/hf.py
HFTrain
¶
Class for training HF models locally.
Source code in ragfit/models/hf.py
__init__(model_name_or_path, torch_dtype, device_map, lora: LoraConfig = None, generation=None, completion_start: str = '', instruction_in_prompt=None, max_sequence_len=None, **kwargs)
¶
Parameters:
-
model_name_or_path
–str - HF model name or path.
-
torch_dtype
–str - torch dtype for the model.
-
device_map
–dict - device map for the model.
-
lora
(LoraConfig
, default:None
) –dict - LoRA adapter config.
-
generation
–dict - generation kwargs.
-
completion_start
(str
, default:''
) –str - used to find the start of the completion in the prompt.
-
instruction_in_prompt
–bool - whether to include the instruction in the prompt for models without system role.