Source code for rl_coach.agents.dqn_agent

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

import numpy as np

from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import QHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters, \
    MiddlewareScheme
from rl_coach.core_types import EnvironmentSteps
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
from rl_coach.schedules import LinearSchedule


[docs]class DQNAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000) self.num_consecutive_playing_steps = EnvironmentSteps(4) self.discount = 0.99 self.supports_parameter_noise = True
class DQNNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium) self.heads_parameters = [QHeadParameters()] self.optimizer_type = 'Adam' self.batch_size = 32 self.replace_mse_with_huber_loss = True self.create_target_network = True self.should_get_softmax_probabilities = False class DQNAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=DQNAlgorithmParameters(), exploration=EGreedyParameters(), memory=ExperienceReplayParameters(), networks={"main": DQNNetworkParameters()}) self.exploration.epsilon_schedule = LinearSchedule(1, 0.1, 1000000) self.exploration.evaluation_epsilon = 0.05 @property def path(self): return 'rl_coach.agents.dqn_agent:DQNAgent' # Deep Q Network - https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
[docs]class DQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) def select_actions(self, next_states, q_st_plus_1): return np.argmax(q_st_plus_1, 1)
[docs] def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # for the action we actually took, the error is: # TD error = r + discount*max(q_st_plus_1) - q_st # # for all other actions, the error is 0 q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) selected_actions = self.select_actions(batch.next_states(network_keys), q_st_plus_1) # add Q value samples for logging self.q_values.add_sample(TD_targets) # only update the action that we have actually done in this transition TD_errors = [] for i in range(batch.size): new_target = batch.rewards()[i] +\ (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * q_st_plus_1[i][selected_actions[i]] TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]])) TD_targets[i, batch.actions()[i]] = new_target # update errors in prioritized replay buffer importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch) result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets, importance_weights=importance_weights) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads