Source code for rl_coach.agents.policy_gradients_agent

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

import numpy as np

from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent, PolicyGradientRescaler
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import PolicyHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \
    AgentParameters

from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.categorical import CategoricalParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.single_episode_buffer import SingleEpisodeBufferParameters
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace


class PolicyGradientNetworkParameters(NetworkParameters):
    def __init__(self):
        super().__init__()
        self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
        self.middleware_parameters = FCMiddlewareParameters()
        self.heads_parameters = [PolicyHeadParameters()]
        self.async_training = True


[docs]class PolicyGradientAlgorithmParameters(AlgorithmParameters): """ :param policy_gradient_rescaler: (PolicyGradientRescaler) The rescaler type to use for the policy gradient loss. For policy gradients, we calculate log probability of the action and then multiply it by the policy gradient rescaler. The most basic rescaler is the discounter return, but there are other rescalers that are intended for reducing the variance of the updates. :param apply_gradients_every_x_episodes: (int) The number of episodes between applying the accumulated gradients to the network. After every num_steps_between_gradient_updates steps, the agent will calculate the gradients for the collected data, it will then accumulate it in internal accumulators, and will only apply them to the network once in every apply_gradients_every_x_episodes episodes. :param beta_entropy: (float) A factor which defines the amount of entropy regularization to apply to the network. The entropy of the actions will be added to the loss and scaled by the given beta factor. :param num_steps_between_gradient_updates: (int) The number of steps between calculating gradients for the collected data. In the A3C paper, this parameter is called t_max. Since this algorithm is on-policy, only the steps collected between each two gradient calculations are used in the batch. """ def __init__(self): super().__init__() self.policy_gradient_rescaler = PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP self.apply_gradients_every_x_episodes = 5 self.beta_entropy = 0 self.num_steps_between_gradient_updates = 20000 # this is called t_max in all the papers
class PolicyGradientsAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=PolicyGradientAlgorithmParameters(), exploration={DiscreteActionSpace: CategoricalParameters(), BoxActionSpace: AdditiveNoiseParameters()}, memory=SingleEpisodeBufferParameters(), networks={"main": PolicyGradientNetworkParameters()}) @property def path(self): return 'rl_coach.agents.policy_gradients_agent:PolicyGradientsAgent' class PolicyGradientsAgent(PolicyOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.returns_mean = self.register_signal('Returns Mean') self.returns_variance = self.register_signal('Returns Variance') self.last_gradient_update_step_idx = 0 def learn_from_batch(self, batch): # batch contains a list of episodes to learn from network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() total_returns = batch.n_step_discounted_rewards() for i in reversed(range(batch.size)): if self.policy_gradient_rescaler == PolicyGradientRescaler.TOTAL_RETURN: total_returns[i] = total_returns[0] elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN: # just take the total return as it is pass elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE: # we can get a single transition episode while playing Doom Basic, causing the std to be 0 if self.std_discounted_return != 0: total_returns[i] = (total_returns[i] - self.mean_discounted_return) / self.std_discounted_return else: total_returns[i] = 0 elif self.policy_gradient_rescaler == PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP: total_returns[i] -= self.mean_return_over_multiple_episodes[i] else: screen.warning("WARNING: The requested policy gradient rescaler is not available") targets = total_returns actions = batch.actions() if type(self.spaces.action) != DiscreteActionSpace and len(actions.shape) < 2: actions = np.expand_dims(actions, -1) self.returns_mean.add_sample(np.mean(total_returns)) self.returns_variance.add_sample(np.std(total_returns)) result = self.networks['main'].online_network.accumulate_gradients( {**batch.states(network_keys), 'output_0_0': actions}, targets ) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads