Source code for rl_coach.agents.ppo_agent

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import copy
from collections import OrderedDict
from typing import Union

import numpy as np

from rl_coach.agents.actor_critic_agent import ActorCriticAgent
from rl_coach.agents.policy_optimization_agent import PolicyGradientRescaler
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import PPOHeadParameters, VHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, \
    AgentParameters, DistributedTaskParameters

from rl_coach.core_types import EnvironmentSteps, Batch
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.categorical import CategoricalParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace
from rl_coach.utils import force_list


class PPOCriticNetworkParameters(NetworkParameters):
    def __init__(self):
        super().__init__()
        self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='tanh')}
        self.middleware_parameters = FCMiddlewareParameters(activation_function='tanh')
        self.heads_parameters = [VHeadParameters()]
        self.async_training = True
        self.l2_regularization = 0
        self.create_target_network = True
        self.batch_size = 128


class PPOActorNetworkParameters(NetworkParameters):
    def __init__(self):
        super().__init__()
        self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='tanh')}
        self.middleware_parameters = FCMiddlewareParameters(activation_function='tanh')
        self.heads_parameters = [PPOHeadParameters()]
        self.optimizer_type = 'Adam'
        self.async_training = True
        self.l2_regularization = 0
        self.create_target_network = True
        self.batch_size = 128


[docs]class PPOAlgorithmParameters(AlgorithmParameters): """ :param policy_gradient_rescaler: (PolicyGradientRescaler) This represents how the critic will be used to update the actor. The critic value function is typically used to rescale the gradients calculated by the actor. There are several ways for doing this, such as using the advantage of the action, or the generalized advantage estimation (GAE) value. :param gae_lambda: (float) The :math:`\lambda` value is used within the GAE function in order to weight different bootstrap length estimations. Typical values are in the range 0.9-1, and define an exponential decay over the different n-step estimations. :param target_kl_divergence: (float) The target kl divergence between the current policy distribution and the new policy. PPO uses a heuristic to bring the KL divergence to this value, by adding a penalty if the kl divergence is higher. :param initial_kl_coefficient: (float) The initial weight that will be given to the KL divergence between the current and the new policy in the regularization factor. :param high_kl_penalty_coefficient: (float) The penalty that will be given for KL divergence values which are highes than what was defined as the target. :param clip_likelihood_ratio_using_epsilon: (float) If not None, the likelihood ratio between the current and new policy in the PPO loss function will be clipped to the range [1-clip_likelihood_ratio_using_epsilon, 1+clip_likelihood_ratio_using_epsilon]. This is typically used in the Clipped PPO version of PPO, and should be set to None in regular PPO implementations. :param value_targets_mix_fraction: (float) The targets for the value network are an exponential weighted moving average which uses this mix fraction to define how much of the new targets will be taken into account when calculating the loss. This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account. :param estimate_state_value_using_gae: (bool) If set to True, the state value will be estimated using the GAE technique. :param use_kl_regularization: (bool) If set to True, the loss function will be regularized using the KL diveregence between the current and new policy, to bound the change of the policy during the network update. :param beta_entropy: (float) An entropy regulaization term can be added to the loss function in order to control exploration. This term is weighted using the :math:`\beta` value defined by beta_entropy. """ def __init__(self): super().__init__() self.policy_gradient_rescaler = PolicyGradientRescaler.GAE self.gae_lambda = 0.96 self.target_kl_divergence = 0.01 self.initial_kl_coefficient = 1.0 self.high_kl_penalty_coefficient = 1000 self.clip_likelihood_ratio_using_epsilon = None self.value_targets_mix_fraction = 0.1 self.estimate_state_value_using_gae = True self.use_kl_regularization = True self.beta_entropy = 0.01 self.num_consecutive_playing_steps = EnvironmentSteps(5000) self.act_for_full_episodes = True
class PPOAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=PPOAlgorithmParameters(), exploration={DiscreteActionSpace: CategoricalParameters(), BoxActionSpace: AdditiveNoiseParameters()}, memory=EpisodicExperienceReplayParameters(), networks={"critic": PPOCriticNetworkParameters(), "actor": PPOActorNetworkParameters()}) @property def path(self): return 'rl_coach.agents.ppo_agent:PPOAgent' # Proximal Policy Optimization - https://arxiv.org/pdf/1707.06347.pdf class PPOAgent(ActorCriticAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) # signals definition self.value_loss = self.register_signal('Value Loss') self.policy_loss = self.register_signal('Policy Loss') self.kl_divergence = self.register_signal('KL Divergence') self.total_kl_divergence_during_training_process = 0.0 self.unclipped_grads = self.register_signal('Grads (unclipped)') def fill_advantages(self, batch): batch = Batch(batch) network_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys() # * Found not to have any impact * # current_states_with_timestep = self.concat_state_and_timestep(batch) current_state_values = self.networks['critic'].online_network.predict(batch.states(network_keys)).squeeze() total_returns = batch.n_step_discounted_rewards() # calculate advantages advantages = [] if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE: advantages = total_returns - current_state_values elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE: # get bootstraps episode_start_idx = 0 advantages = np.array([]) # current_state_values[batch.game_overs()] = 0 for idx, game_over in enumerate(batch.game_overs()): if game_over: # get advantages for the rollout value_bootstrapping = np.zeros((1,)) rollout_state_values = np.append(current_state_values[episode_start_idx:idx+1], value_bootstrapping) rollout_advantages, _ = \ self.get_general_advantage_estimation_values(batch.rewards()[episode_start_idx:idx+1], rollout_state_values) episode_start_idx = idx + 1 advantages = np.append(advantages, rollout_advantages) else: screen.warning("WARNING: The requested policy gradient rescaler is not available") # standardize advantages = (advantages - np.mean(advantages)) / np.std(advantages) # TODO: this will be problematic with a shared memory for transition, advantage in zip(self.memory.transitions, advantages): transition.info['advantage'] = advantage self.action_advantages.add_sample(advantages) def train_value_network(self, dataset, epochs): loss = [] batch = Batch(dataset) network_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys() # * Found not to have any impact * # add a timestep to the observation # current_states_with_timestep = self.concat_state_and_timestep(dataset) mix_fraction = self.ap.algorithm.value_targets_mix_fraction total_returns = batch.n_step_discounted_rewards(True) for j in range(epochs): curr_batch_size = batch.size if self.networks['critic'].online_network.optimizer_type != 'LBFGS': curr_batch_size = self.ap.network_wrappers['critic'].batch_size for i in range(batch.size // curr_batch_size): # split to batches for first order optimization techniques current_states_batch = { k: v[i * curr_batch_size:(i + 1) * curr_batch_size] for k, v in batch.states(network_keys).items() } total_return_batch = total_returns[i * curr_batch_size:(i + 1) * curr_batch_size] old_policy_values = force_list(self.networks['critic'].target_network.predict( current_states_batch).squeeze()) if self.networks['critic'].online_network.optimizer_type != 'LBFGS': targets = total_return_batch else: current_values = self.networks['critic'].online_network.predict(current_states_batch) targets = current_values * (1 - mix_fraction) + total_return_batch * mix_fraction inputs = copy.copy(current_states_batch) for input_index, input in enumerate(old_policy_values): name = 'output_0_{}'.format(input_index) if name in self.networks['critic'].online_network.inputs: inputs[name] = input value_loss = self.networks['critic'].online_network.accumulate_gradients(inputs, targets) self.networks['critic'].apply_gradients_to_online_network() if isinstance(self.ap.task_parameters, DistributedTaskParameters): self.networks['critic'].apply_gradients_to_global_network() self.networks['critic'].online_network.reset_accumulated_gradients() loss.append([value_loss[0]]) loss = np.mean(loss, 0) return loss def concat_state_and_timestep(self, dataset): current_states_with_timestep = [np.append(transition.state['observation'], transition.info['timestep']) for transition in dataset] current_states_with_timestep = np.expand_dims(current_states_with_timestep, -1) return current_states_with_timestep def train_policy_network(self, dataset, epochs): loss = [] for j in range(epochs): loss = { 'total_loss': [], 'policy_losses': [], 'unclipped_grads': [], 'fetch_result': [] } #shuffle(dataset) for i in range(len(dataset) // self.ap.network_wrappers['actor'].batch_size): batch = Batch(dataset[i * self.ap.network_wrappers['actor'].batch_size: (i + 1) * self.ap.network_wrappers['actor'].batch_size]) network_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys() advantages = batch.info('advantage') actions = batch.actions() if not isinstance(self.spaces.action, DiscreteActionSpace) and len(actions.shape) == 1: actions = np.expand_dims(actions, -1) # get old policy probabilities and distribution old_policy = force_list(self.networks['actor'].target_network.predict(batch.states(network_keys))) # calculate gradients and apply on both the local policy network and on the global policy network fetches = [self.networks['actor'].online_network.output_heads[0].kl_divergence, self.networks['actor'].online_network.output_heads[0].entropy] inputs = copy.copy(batch.states(network_keys)) inputs['output_0_0'] = actions # old_policy_distribution needs to be represented as a list, because in the event of discrete controls, # it has just a mean. otherwise, it has both a mean and standard deviation for input_index, input in enumerate(old_policy): inputs['output_0_{}'.format(input_index + 1)] = input total_loss, policy_losses, unclipped_grads, fetch_result =\ self.networks['actor'].online_network.accumulate_gradients( inputs, [advantages], additional_fetches=fetches) self.networks['actor'].apply_gradients_to_online_network() if isinstance(self.ap.task_parameters, DistributedTaskParameters): self.networks['actor'].apply_gradients_to_global_network() self.networks['actor'].online_network.reset_accumulated_gradients() loss['total_loss'].append(total_loss) loss['policy_losses'].append(policy_losses) loss['unclipped_grads'].append(unclipped_grads) loss['fetch_result'].append(fetch_result) self.unclipped_grads.add_sample(unclipped_grads) for key in loss.keys(): loss[key] = np.mean(loss[key], 0) if self.ap.network_wrappers['critic'].learning_rate_decay_rate != 0: curr_learning_rate = self.networks['critic'].online_network.get_variable_value(self.ap.learning_rate) self.curr_learning_rate.add_sample(curr_learning_rate) else: curr_learning_rate = self.ap.network_wrappers['critic'].learning_rate # log training parameters screen.log_dict( OrderedDict([ ("Surrogate loss", loss['policy_losses'][0]), ("KL divergence", loss['fetch_result'][0]), ("Entropy", loss['fetch_result'][1]), ("training epoch", j), ("learning_rate", curr_learning_rate) ]), prefix="Policy training" ) self.total_kl_divergence_during_training_process = loss['fetch_result'][0] self.entropy.add_sample(loss['fetch_result'][1]) self.kl_divergence.add_sample(loss['fetch_result'][0]) return loss['total_loss'] def update_kl_coefficient(self): # John Schulman takes the mean kl divergence only over the last epoch which is strange but we will follow # his implementation for now because we know it works well screen.log_title("KL = {}".format(self.total_kl_divergence_during_training_process)) # update kl coefficient kl_target = self.ap.algorithm.target_kl_divergence kl_coefficient = self.networks['actor'].online_network.get_variable_value( self.networks['actor'].online_network.output_heads[0].kl_coefficient) new_kl_coefficient = kl_coefficient if self.total_kl_divergence_during_training_process > 1.3 * kl_target: # kl too high => increase regularization new_kl_coefficient *= 1.5 elif self.total_kl_divergence_during_training_process < 0.7 * kl_target: # kl too low => decrease regularization new_kl_coefficient /= 1.5 # update the kl coefficient variable if kl_coefficient != new_kl_coefficient: self.networks['actor'].online_network.set_variable_value( self.networks['actor'].online_network.output_heads[0].assign_kl_coefficient, new_kl_coefficient, self.networks['actor'].online_network.output_heads[0].kl_coefficient_ph) screen.log_title("KL penalty coefficient change = {} -> {}".format(kl_coefficient, new_kl_coefficient)) def post_training_commands(self): if self.ap.algorithm.use_kl_regularization: self.update_kl_coefficient() # clean memory self.call_memory('clean') def train(self): loss = 0 if self._should_train(): for network in self.networks.values(): network.set_is_training(True) for training_step in range(self.ap.algorithm.num_consecutive_training_steps): self.networks['actor'].sync() self.networks['critic'].sync() dataset = self.memory.transitions self.fill_advantages(dataset) # take only the requested number of steps dataset = dataset[:self.ap.algorithm.num_consecutive_playing_steps.num_steps] value_loss = self.train_value_network(dataset, 1) policy_loss = self.train_policy_network(dataset, 10) self.value_loss.add_sample(value_loss) self.policy_loss.add_sample(policy_loss) for network in self.networks.values(): network.set_is_training(False) self.post_training_commands() self.training_iteration += 1 self.update_log() # should be done in order to update the data that has been accumulated * while not playing * return np.append(value_loss, policy_loss) def get_prediction(self, states): tf_input_state = self.prepare_batch_for_inference(states, "actor") return self.networks['actor'].online_network.predict(tf_input_state)