Source code for rl_coach.environments.environment

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import operator
import time
from collections import OrderedDict
from typing import Union, List, Tuple, Dict

import numpy as np

from rl_coach import logger
from rl_coach.base_parameters import Parameters
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.core_types import GoalType, ActionType, EnvResponse, RunPhase
from rl_coach.environments.environment_interface import EnvironmentInterface
from rl_coach.logger import screen
from rl_coach.renderer import Renderer
from rl_coach.spaces import ActionSpace, ObservationSpace, DiscreteActionSpace, RewardSpace, StateSpace
from rl_coach.utils import squeeze_list, force_list


class LevelSelection(object):
    def __init__(self, level: str):
        self.selected_level = level

    def select(self, level: str):
        self.selected_level = level

    def __str__(self):
        if self.selected_level is None:
            logger.screen.error("No level has been selected. Please select a level using the -lvl command line flag, "
                                "or change the level in the preset.", crash=True)
        return self.selected_level


class SingleLevelSelection(LevelSelection):
    def __init__(self, levels: Union[str, List[str], Dict[str, str]]):
        super().__init__(None)
        self.levels = levels
        if isinstance(levels, list):
            self.levels = {level: level for level in levels}
        if isinstance(levels, str):
            self.levels = {levels: levels}

    def __str__(self):
        if self.selected_level is None:
            logger.screen.error("No level has been selected. Please select a level using the -lvl command line flag, "
                                "or change the level in the preset. \nThe available levels are: \n{}"
                                .format(', '.join(sorted(self.levels.keys()))), crash=True)
        selected_level = self.selected_level.lower()
        if selected_level not in self.levels.keys():
            logger.screen.error("The selected level ({}) is not part of the available levels ({})"
                                .format(selected_level, ', '.join(self.levels.keys())), crash=True)
        return self.levels[selected_level]


# class SingleLevelPerPhase(LevelSelection):
#     def __init__(self, levels: Dict[RunPhase, str]):
#         super().__init__(None)
#         self.levels = levels
#
#     def __str__(self):
#         super().__str__()
#         if self.selected_level not in self.levels.keys():
#             logger.screen.error("The selected level ({}) is not part of the available levels ({})"
#                                 .format(self.selected_level, self.levels.keys()), crash=True)
#         return self.levels[self.selected_level]


class CustomWrapper(object):
    def __init__(self, environment):
        super().__init__()
        self.environment = environment

    def __getattr__(self, attr):
        if attr in self.__dict__:
            return self.__dict__[attr]
        else:
            return getattr(self.environment, attr, False)


class EnvironmentParameters(Parameters):
    def __init__(self, level=None):
        super().__init__()
        self.level = level
        self.frame_skip = 4
        self.seed = None
        self.human_control = False
        self.custom_reward_threshold = None
        self.default_input_filter = None
        self.default_output_filter = None
        self.experiment_path = None

        # Set target reward and target_success if present
        self.target_success_rate = 1.0

    @property
    def path(self):
        return 'rl_coach.environments.environment:Environment'


[docs]class Environment(EnvironmentInterface): def __init__(self, level: LevelSelection, seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float], visualization_parameters: VisualizationParameters, target_success_rate: float=1.0, **kwargs): """ :param level: The environment level. Each environment can have multiple levels :param seed: a seed for the random number generator of the environment :param frame_skip: number of frames to skip (while repeating the same action) between each two agent directives :param human_control: human should control the environment :param visualization_parameters: a blob of parameters used for visualization of the environment :param **kwargs: as the class is instantiated by EnvironmentParameters, this is used to support having additional arguments which will be ignored by this class, but might be used by others """ super().__init__() # env initialization self.game = [] self.state = {} self.observation = None self.goal = None self.reward = 0 self.done = False self.info = {} self._last_env_response = None self.last_action = 0 self.episode_idx = 0 self.total_steps_counter = 0 self.current_episode_steps_counter = 0 self.last_episode_time = time.time() self.key_to_action = {} self.last_episode_images = [] # rewards self.total_reward_in_current_episode = 0 self.max_reward_achieved = -np.inf self.reward_success_threshold = custom_reward_threshold # spaces self.state_space = self._state_space = None self.goal_space = self._goal_space = None self.action_space = self._action_space = None self.reward_space = RewardSpace(1, reward_success_threshold=self.reward_success_threshold) # TODO: add a getter and setter self.env_id = str(level) self.seed = seed self.frame_skip = frame_skip # human interaction and visualization self.human_control = human_control self.wait_for_explicit_human_action = False self.is_rendered = visualization_parameters.render or self.human_control self.native_rendering = visualization_parameters.native_rendering and not self.human_control self.visualization_parameters = visualization_parameters if not self.native_rendering: self.renderer = Renderer() # Set target reward and target_success if present self.target_success_rate = target_success_rate @property def action_space(self) -> Union[List[ActionSpace], ActionSpace]: """ Get the action space of the environment :return: the action space """ return self._action_space @action_space.setter def action_space(self, val: Union[List[ActionSpace], ActionSpace]): """ Set the action space of the environment :return: None """ self._action_space = val @property def state_space(self) -> Union[List[StateSpace], StateSpace]: """ Get the state space of the environment :return: the observation space """ return self._state_space @state_space.setter def state_space(self, val: Union[List[StateSpace], StateSpace]): """ Set the state space of the environment :return: None """ self._state_space = val @property def goal_space(self) -> Union[List[ObservationSpace], ObservationSpace]: """ Get the state space of the environment :return: the observation space """ return self._goal_space @goal_space.setter def goal_space(self, val: Union[List[ObservationSpace], ObservationSpace]): """ Set the goal space of the environment :return: None """ self._goal_space = val
[docs] def get_action_from_user(self) -> ActionType: """ Get an action from the user keyboard :return: action index """ if self.wait_for_explicit_human_action: while len(self.renderer.pressed_keys) == 0: self.renderer.get_events() if self.key_to_action == {}: # the keys are the numbers on the keyboard corresponding to the action index if len(self.renderer.pressed_keys) > 0: action_idx = self.renderer.pressed_keys[0] - ord("1") if 0 <= action_idx < self.action_space.shape[0]: return action_idx else: # the keys are mapped through the environment to more intuitive keyboard keys # key = tuple(self.renderer.pressed_keys) # for key in self.renderer.pressed_keys: for env_keys in self.key_to_action.keys(): if set(env_keys) == set(self.renderer.pressed_keys): return self.action_space.actions[self.key_to_action[env_keys]] # return the default action 0 so that the environment will continue running return self.action_space.default_action
@property def last_env_response(self) -> Union[List[EnvResponse], EnvResponse]: """ Get the last environment response :return: a dictionary that contains the state, reward, etc. """ return squeeze_list(self._last_env_response) @last_env_response.setter def last_env_response(self, val: Union[List[EnvResponse], EnvResponse]): """ Set the last environment response :param val: the last environment response """ self._last_env_response = force_list(val)
[docs] def step(self, action: ActionType) -> EnvResponse: """ Make a single step in the environment using the given action :param action: an action to use for stepping the environment. Should follow the definition of the action space. :return: the environment response as returned in get_last_env_response """ action = self.action_space.clip_action_to_space(action) if self.action_space and not self.action_space.contains(action): raise ValueError("The given action does not match the action space definition. " "Action = {}, action space definition = {}".format(action, self.action_space)) # store the last agent action done and allow passing None actions to repeat the previously done action if action is None: action = self.last_action self.last_action = action if self.visualization_parameters.add_rendered_image_to_env_response: current_rendered_image = self.get_rendered_image() self.current_episode_steps_counter += 1 if self.phase != RunPhase.UNDEFINED: self.total_steps_counter += 1 # act self._take_action(action) # observe self._update_state() if self.is_rendered: self.render() self.total_reward_in_current_episode += self.reward if self.visualization_parameters.add_rendered_image_to_env_response: self.info['image'] = current_rendered_image self.last_env_response = \ EnvResponse( reward=self.reward, next_state=self.state, goal=self.goal, game_over=self.done, info=self.info ) # store observations for video / gif dumping if self.should_dump_video_of_the_current_episode(episode_terminated=False) and \ (self.visualization_parameters.dump_mp4 or self.visualization_parameters.dump_gifs): self.last_episode_images.append(self.get_rendered_image()) return self.last_env_response
[docs] def render(self) -> None: """ Call the environment function for rendering to the screen :return: None """ if self.native_rendering: self._render() else: self.renderer.render_image(self.get_rendered_image())
[docs] def handle_episode_ended(self) -> None: """ End an episode :return: None """ self.dump_video_of_last_episode_if_needed()
[docs] def reset_internal_state(self, force_environment_reset=False) -> EnvResponse: """ Reset the environment and all the variable of the wrapper :param force_environment_reset: forces environment reset even when the game did not end :return: A dictionary containing the observation, reward, done flag, action and measurements """ self._restart_environment_episode(force_environment_reset) self.last_episode_time = time.time() if self.current_episode_steps_counter > 0 and self.phase != RunPhase.UNDEFINED: self.episode_idx += 1 self.done = False self.total_reward_in_current_episode = self.reward = 0.0 self.last_action = 0 self.current_episode_steps_counter = 0 self.last_episode_images = [] self._update_state() # render before the preprocessing of the observation, so that the image will be in its original quality if self.is_rendered: self.render() self.last_env_response = \ EnvResponse( reward=self.reward, next_state=self.state, goal=self.goal, game_over=self.done, info=self.info ) return self.last_env_response
[docs] def get_random_action(self) -> ActionType: """ Returns an action picked uniformly from the available actions :return: a numpy array with a random action """ return self.action_space.sample()
[docs] def get_available_keys(self) -> List[Tuple[str, ActionType]]: """ Return a list of tuples mapping between action names and the keyboard key that triggers them :return: a list of tuples mapping between action names and the keyboard key that triggers them """ available_keys = [] if self.key_to_action != {}: for key, idx in sorted(self.key_to_action.items(), key=operator.itemgetter(1)): if key != (): key_names = [self.renderer.get_key_names([k])[0] for k in key] available_keys.append((self.action_space.descriptions[idx], ' + '.join(key_names))) elif type(self.action_space) == DiscreteActionSpace: for action in range(self.action_space.shape): available_keys.append(("Action {}".format(action + 1), action + 1)) return available_keys
[docs] def get_goal(self) -> GoalType: """ Get the current goal that the agents needs to achieve in the environment :return: The goal """ return self.goal
[docs] def set_goal(self, goal: GoalType) -> None: """ Set the current goal that the agent needs to achieve in the environment :param goal: the goal that needs to be achieved :return: None """ self.goal = goal
def should_dump_video_of_the_current_episode(self, episode_terminated=False): if self.visualization_parameters.video_dump_filters: for video_dump_filter in force_list(self.visualization_parameters.video_dump_filters): if not video_dump_filter.should_dump(episode_terminated, **self.__dict__): return False return True return True def dump_video_of_last_episode_if_needed(self): if self.last_episode_images != [] and self.should_dump_video_of_the_current_episode(episode_terminated=True): self.dump_video_of_last_episode() def dump_video_of_last_episode(self): frame_skipping = max(1, int(5 / self.frame_skip)) file_name = 'episode-{}_score-{}'.format(self.episode_idx, self.total_reward_in_current_episode) fps = 10 if self.visualization_parameters.dump_gifs: logger.create_gif(self.last_episode_images[::frame_skipping], name=file_name, fps=fps) if self.visualization_parameters.dump_mp4: logger.create_mp4(self.last_episode_images[::frame_skipping], name=file_name, fps=fps) # The following functions define the interaction with the environment. # Any new environment that inherits the Environment class should use these signatures. # Some of these functions are optional - please read their description for more details. def _take_action(self, action_idx: ActionType) -> None: """ An environment dependent function that sends an action to the simulator. :param action_idx: the action to perform on the environment :return: None """ raise NotImplementedError("") def _update_state(self) -> None: """ Updates the state from the environment. Should update self.observation, self.reward, self.done, self.measurements and self.info :return: None """ raise NotImplementedError("") def _restart_environment_episode(self, force_environment_reset=False) -> None: """ Restarts the simulator episode :param force_environment_reset: Force the environment to reset even if the episode is not done yet. :return: None """ raise NotImplementedError("") def _render(self) -> None: """ Renders the environment using the native simulator renderer :return: None """ pass
[docs] def get_rendered_image(self) -> np.ndarray: """ Return a numpy array containing the image that will be rendered to the screen. This can be different from the observation. For example, mujoco's observation is a measurements vector. :return: numpy array containing the image that will be rendered to the screen """ return np.transpose(self.state['observation'], [1, 2, 0])
def get_target_success_rate(self) -> float: return self.target_success_rate
[docs] def close(self) -> None: """ Clean up steps. :return: None """ pass