Source code for rl_coach.environments.starcraft2_environment

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


from enum import Enum
from typing import Union, List

import numpy as np

from rl_coach.filters.observation.observation_move_axis_filter import ObservationMoveAxisFilter

try:
    from pysc2 import maps
    from pysc2.env import sc2_env
    from pysc2.env import available_actions_printer
    from pysc2.lib import actions
    from pysc2.lib import features
    from pysc2.env import environment
    from absl import app
    from absl import flags
except ImportError:
    from rl_coach.logger import failed_imports
    failed_imports.append("PySc2")

from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection
from rl_coach.base_parameters import VisualizationParameters
from rl_coach.spaces import BoxActionSpace, VectorObservationSpace, PlanarMapsObservationSpace, StateSpace, CompoundActionSpace, \
    DiscreteActionSpace
from rl_coach.filters.filter import InputFilter, OutputFilter
from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter
from rl_coach.filters.action.linear_box_to_box_map import LinearBoxToBoxMap
from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter

FLAGS = flags.FLAGS
FLAGS(['coach.py'])

SCREEN_SIZE = 84  # will also impact the action space size

# Starcraft Constants
_NOOP = actions.FUNCTIONS.no_op.id
_MOVE_SCREEN = actions.FUNCTIONS.Move_screen.id
_SELECT_ARMY = actions.FUNCTIONS.select_army.id
_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index
_NOT_QUEUED = [0]
_SELECT_ALL = [0]


class StarcraftObservationType(Enum):
    Features = 0
    RGB = 1


StarcraftInputFilter = InputFilter(is_a_reference_filter=True)
StarcraftInputFilter.add_observation_filter('screen', 'move_axis', ObservationMoveAxisFilter(0, -1))
StarcraftInputFilter.add_observation_filter('screen', 'rescaling',
                                            ObservationRescaleToSizeFilter(
                                                PlanarMapsObservationSpace(np.array([84, 84, 1]),
                                                                           low=0, high=255, channels_axis=-1)))
StarcraftInputFilter.add_observation_filter('screen', 'to_uint8', ObservationToUInt8Filter(0, 255))

StarcraftInputFilter.add_observation_filter('minimap', 'move_axis', ObservationMoveAxisFilter(0, -1))
StarcraftInputFilter.add_observation_filter('minimap', 'rescaling',
                                            ObservationRescaleToSizeFilter(
                                                PlanarMapsObservationSpace(np.array([64, 64, 1]),
                                                                           low=0, high=255, channels_axis=-1)))
StarcraftInputFilter.add_observation_filter('minimap', 'to_uint8', ObservationToUInt8Filter(0, 255))


StarcraftNormalizingOutputFilter = OutputFilter(is_a_reference_filter=True)
StarcraftNormalizingOutputFilter.add_action_filter(
    'normalization', LinearBoxToBoxMap(input_space_low=-SCREEN_SIZE / 2, input_space_high=SCREEN_SIZE / 2 - 1))


class StarCraft2EnvironmentParameters(EnvironmentParameters):
    def __init__(self, level=None):
        super().__init__(level=level)
        self.screen_size = 84
        self.minimap_size = 64
        self.feature_minimap_maps_to_use = range(7)
        self.feature_screen_maps_to_use = range(17)
        self.observation_type = StarcraftObservationType.Features
        self.disable_fog = False
        self.auto_select_all_army = True
        self.default_input_filter = StarcraftInputFilter
        self.default_output_filter = StarcraftNormalizingOutputFilter
        self.use_full_action_space = False


    @property
    def path(self):
        return 'rl_coach.environments.starcraft2_environment:StarCraft2Environment'


# Environment
[docs]class StarCraft2Environment(Environment): def __init__(self, level: LevelSelection, frame_skip: int, visualization_parameters: VisualizationParameters, target_success_rate: float=1.0, seed: Union[None, int]=None, human_control: bool=False, custom_reward_threshold: Union[int, float]=None, screen_size: int=84, minimap_size: int=64, feature_minimap_maps_to_use: List=range(7), feature_screen_maps_to_use: List=range(17), observation_type: StarcraftObservationType=StarcraftObservationType.Features, disable_fog: bool=False, auto_select_all_army: bool=True, use_full_action_space: bool=False, **kwargs): super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters, target_success_rate) self.screen_size = screen_size self.minimap_size = minimap_size self.feature_minimap_maps_to_use = feature_minimap_maps_to_use self.feature_screen_maps_to_use = feature_screen_maps_to_use self.observation_type = observation_type self.features_screen_size = None self.feature_minimap_size = None self.rgb_screen_size = None self.rgb_minimap_size = None if self.observation_type == StarcraftObservationType.Features: self.features_screen_size = screen_size self.feature_minimap_size = minimap_size elif self.observation_type == StarcraftObservationType.RGB: self.rgb_screen_size = screen_size self.rgb_minimap_size = minimap_size self.disable_fog = disable_fog self.auto_select_all_army = auto_select_all_army self.use_full_action_space = use_full_action_space # step_mul is the equivalent to frame skipping. Not sure if it repeats actions in between or not though. self.env = sc2_env.SC2Env(map_name=self.env_id, step_mul=frame_skip, visualize=self.is_rendered, agent_interface_format=sc2_env.AgentInterfaceFormat( feature_dimensions=sc2_env.Dimensions( screen=self.features_screen_size, minimap=self.feature_minimap_size ) # rgb_dimensions=sc2_env.Dimensions( # screen=self.rgb_screen_size, # minimap=self.rgb_screen_size # ) ), # feature_screen_size=self.features_screen_size, # feature_minimap_size=self.feature_minimap_size, # rgb_screen_size=self.rgb_screen_size, # rgb_minimap_size=self.rgb_screen_size, disable_fog=disable_fog, random_seed=self.seed ) # print all the available actions # self.env = available_actions_printer.AvailableActionsPrinter(self.env) self.reset_internal_state(True) """ feature_screen: [height_map, visibility_map, creep, power, player_id, player_relative, unit_type, selected, unit_hit_points, unit_hit_points_ratio, unit_energy, unit_energy_ratio, unit_shields, unit_shields_ratio, unit_density, unit_density_aa, effects] feature_minimap: [height_map, visibility_map, creep, camera, player_id, player_relative, selecte d] player: [player_id, minerals, vespene, food_cap, food_army, food_workers, idle_worker_dount, army_count, warp_gate_count, larva_count] """ self.screen_shape = np.array(self.env.observation_spec()[0]['feature_screen']) self.screen_shape[0] = len(self.feature_screen_maps_to_use) self.minimap_shape = np.array(self.env.observation_spec()[0]['feature_minimap']) self.minimap_shape[0] = len(self.feature_minimap_maps_to_use) self.state_space = StateSpace({ "screen": PlanarMapsObservationSpace(shape=self.screen_shape, low=0, high=255, channels_axis=0), "minimap": PlanarMapsObservationSpace(shape=self.minimap_shape, low=0, high=255, channels_axis=0), "measurements": VectorObservationSpace(self.env.observation_spec()[0]["player"][0]) }) if self.use_full_action_space: action_identifiers = list(self.env.action_spec()[0].functions) num_action_identifiers = len(action_identifiers) action_arguments = [(arg.name, arg.sizes) for arg in self.env.action_spec()[0].types] sub_action_spaces = [DiscreteActionSpace(num_action_identifiers)] for argument in action_arguments: for dimension in argument[1]: sub_action_spaces.append(DiscreteActionSpace(dimension)) self.action_space = CompoundActionSpace(sub_action_spaces) else: self.action_space = BoxActionSpace(2, 0, self.screen_size - 1, ["X-Axis, Y-Axis"], default_action=np.array([self.screen_size/2, self.screen_size/2])) self.target_success_rate = target_success_rate def _update_state(self): timestep = 0 self.screen = self.last_result[timestep].observation.feature_screen # extract only the requested segmentation maps from the observation self.screen = np.take(self.screen, self.feature_screen_maps_to_use, axis=0) self.minimap = self.last_result[timestep].observation.feature_minimap self.measurements = self.last_result[timestep].observation.player self.reward = self.last_result[timestep].reward self.done = self.last_result[timestep].step_type == environment.StepType.LAST self.state = { 'screen': self.screen, 'minimap': self.minimap, 'measurements': self.measurements } def _take_action(self, action): if self.use_full_action_space: action_identifier = action[0] action_arguments = action[1:] action = actions.FunctionCall(action_identifier, action_arguments) else: coord = np.array(action[0:2]) noop = False coord = coord.round() coord = np.clip(coord, 0, SCREEN_SIZE - 1) self.last_action_idx = coord if noop: action = actions.FunctionCall(_NOOP, []) else: action = actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord]) self.last_result = self.env.step(actions=[action]) def _restart_environment_episode(self, force_environment_reset=False): # reset the environment self.last_result = self.env.reset() # select all the units on the screen if self.auto_select_all_army: self.env.step(actions=[actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])]) def get_rendered_image(self): screen = np.squeeze(np.tile(np.expand_dims(self.screen, -1), (1, 1, 3))) screen = screen / np.max(screen) * 255 return screen.astype('uint8') def dump_video_of_last_episode(self): from rl_coach.logger import experiment_path self.env._run_config.replay_dir = experiment_path self.env.save_replay('replays') super().dump_video_of_last_episode() def get_target_success_rate(self): return self.target_success_rate