OpenOmics ProtGPT2
OpenOmics ProtGPT2
ProtGPT2 is a popular deep language model for protein design. ProtpGPT2, trained on known proteins, generates de novo proteins sequences, hence has the potential to revolutionize domains such as Healthcare, Agriculture, Climate, etc. OpenOmics ProtGPT2 is a highly optimized version of the original ProtGPT2 for modern CPUs, with support for lower precision computations. It maintains the exact same accuracy level as original the ProtGPT2.
Notes:
- OpenOmics ProtGPT2 supports all the parameters supported by original ProtGPT2 (please refer to original PrtoGPT2 readme below)
- Additionly, OpenOmics ProtGPT2 provides three more parameters:
--dtype
: <float32/bfloat16> (lower precision for faster execution)--model_dir
: <directory path of user provided model files> (user provided models for inference)--output_file
: <output (fasta) file name> (generate output fasta file instead of printing on terminal)
- OpenOmics ProtGPT2 by default downloads the model parameters; user can provide his/her models through
--model_dir
input parameter
Using Docker
Build
git clone https://github.com/IntelLabs/Open-Omics-Acceleration-Framework.git
cd Open-Omics-Acceleration-Framework/applications/protgpt2
docker build --build-arg http_proxy=<proxy_url> --build-arg https_proxy=<proxy_url> -t protgpt2 .
Run
export OUTPUT_DIR=<output_dir_path> ## needs a+w permission on the dir
docker run -it -v $OUTPUT_DIR:/output protgpt2:latest python protgpt2.py --max_length <max_seq_len> --do_sample <True/False> --top_k <value> --repetition_penalty <value> --num_return_sequences <num_output_seqs> --eos_token_id <0> --dtype <float32/bfloat16> --iterations <num_iters> --output_file /output/<output_file_name>
Note: external models can be provided using --model_dir
parameter.
Using source code
git clone https://github.com/IntelLabs/Open-Omics-Acceleration-Framework.git
cd Open-Omics-Acceleration-Framework/applications/protgpt2
conda env create -f env.yml ## Needs anaconda or miniconda or similar distributions for Python
conda activate protgpt2
Install jemalloc for better performance
git clone --branch 5.3.0 https://github.com/jemalloc/jemalloc.git
cd jemalloc && bash autogen.sh --prefix=$CONDA_PREFIX && make install
cd ..
export LD_LIBRARY_PATH="$CONDA_PREFIX/lib:$LD_LIBRARY_PATH"
Run
python protgpt2.py --max_length <max_seq_len> --do_sample <True/False> --top_k <value> --repetition_penalty <value> --num_return_sequences <number_output_sequences> --eos_token_id 0 --dtype <float32/bfloat16> --iterations <num_iters> --output_file <output_seq_file>
Example:
python protgpt2.py --max_length 100 --do_sample True --top_k 950 --repetition_penalty 1.2 --num_return_sequences 10 --eos_token_id 0 --dtype float32 --iterations 5 --output_file protgpt2_output.txt
OpenOmics Protgpt2 README ends here
Original Protgpt2 README follows:
ProtGPT2
ProtGPT2 (peer-reviewed paper) is a language model that speaks the protein language and can be used for de novo protein design and engineering. ProtGPT2 generated sequences conserve natural proteins’ critical features (amino acid propensities, secondary structural content, and globularity) while exploring unseen regions of the protein space.
Model description
ProtGPT2 is based on the GPT2 Transformer architecture and contains 36 layers with a model dimensionality of 1280, totalling 738 million parameters.
ProtGPT2 is a decoder-only transformer model pre-trained on the protein space, database UniRef50 (version 2021_04). The pre-training was done on the raw sequences without FASTA headers. Details of training and datasets can be found here: https://huggingface.co/datasets/nferruz/UR50_2021_04
ProtGPT2 was trained in a self-supervised fashion, i.e., the raw sequence data was used during training without including the annotation of sequences. In particular, ProtGPT2 was trained using a causal modelling objective, in which the model is trained to predict the next token (or, in this case, oligomer) in the sequence. By doing so, the model learns an internal representation of proteins and is able to speak the protein language.
How to use ProtGPT2
ProtGPT2 can be used with the HuggingFace transformer python package. Detailed installation instructions can be found here: https://huggingface.co/docs/transformers/installation
Since ProtGPT2 has been trained on the classical language model objective, it excels at generating protein sequences. It can be used to generate sequences in a zero-shot fashion or to generate sequences of a particular type after finetuning on a user-defined dataset.
Example 1: Generating de novo proteins in a zero-shot fashion
In the example below, ProtGPT2 generates sequences that follow the amino acid ‘M’. Any other amino acid, oligomer, fragment, or protein of choice can be selected instead. The model will generate the most probable sequences that follow the input. Alternatively, the input field can also be left empty and it will choose the starting tokens.
>>> from transformers import pipeline
>>> protgpt2 = pipeline('text-generation', model="nferruz/ProtGPT2")
# length is expressed in tokens, where each token has an average length of 4 amino acids.
>>> sequences = protgpt2("<|endoftext|>", max_length=100, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0)
>>> for seq in sequences:
print(seq):
{'generated_text': 'MINDLLDISRIISGKMTLDRAEVNLTAIARQVVEEQRQAAEAKSIQLLCSTPDTNHYVFG\nDFDRLKQTLWNLLSNAVKFTPSGGTVELELGYNAEGMEVYVKDSGIGIDPAFLPYVFDRF\nRQSDAADSRNYGGLGLGLAIVKHLLDLHEGNVSAQSEGFGKGATFTVLLPLKPLKRELAA\nVNRHTAVQQSAPLNDNLAGMKILIVEDRPDTNEMVSYILEEAGAIVETAESGAAALTSLK\nSYSPDLVLSDIGMPMMDGYEMIEYIREWKTTKGG'}
{'generated_text': 'MQGDSSISSSNRMFT\nLCKPLTVANETSTLSTTRNSKSNKRVSKQRVNLAESPERNAPSPASIKTNETEEFSTIKT\nTNNEVLGYEPNYVSYDFVPMEKCNLCNENCSIELASLNEETFVKKTICCHECRKKAIENA\nENNNTKGSAVSNNSVTSSSGRKKIIVSGSQILRNLDSLTSSKSNISTLLNPNHLAKLAKN\nGNLSSLSSLQSSASSISKSSSTSSTPTTSPKVSSPTNSPSSSPINSPTP'}
{'generated_text': 'M\nSTHVSLENTLASLQATFFSLEARHTALETQLLSTRTELAATKQELVRVQAEISRADAQAQ\nDLKAQILTLKEKADQAEVEAAAATQRAEESQAALEAQTAELAQLRLEKQAPQHVAEEGDP\nQPAAPTTQAQSPVTSAAAAASSAASAEPSKPELTFPAYTKRKPPTITHAPKAPTKVALNP\nSTLSTSGSGGGAKADPTPTTPVPSSSAGLIPKALRLPPPVTPAASGAKPAPSARSKLRGP\nDAPLSPSTQS'}
{'generated_text': 'MVLLSTGPLPILFLGPSLAELNQKYQVVSDTLLRFTNTV\nTFNTLKFLGSDS\n'}
{'generated_text': 'M\nNNDEQPFIMSTSGYAGNTTSSMNSTSDFNTNNKSNTWSNRFSNFIAYFSGVGWFIGAISV\nIFFIIYVIVFLSRKTKPSGQKQYSRTERNNRDVDSIKRANYYG\n'}
{'generated_text': 'M\nEAVYSFTITETGTGTVEVTPLDRTISGADIVYPPDTACVPLTVQPVINANGTWTLGSGCT\nGHFSVDTTGHVNCLTGGFGAAGVHTVIYTVETPYSGNSFAVIDVNVTEPSGPGDGGNGNG\nDRGDGPDNGGGNNPGPDPDPSTPPPPGDCSSPLPVVCSDRDCADFDTQAQVQIYLDRYGG\nTCDLDGNHDGTPCENLPNNSGGQSSDSGNGGGNPGTGSTHQVVTGDCLWNIASRNNGQGG\nQAWPALLAANNESITNP'}
{'generated_text': 'M\nGLTTSGGARGFCSLAVLQELVPRPELLFVIDRAFHSGKHAVDMQVVDQEGLGDGVATLLY\nAHQGLYTCLLQAEARLLGREWAAVPALEPNFMESPLIALPRQLLEGLEQNILSAYGSEWS\nQDVAEPQGDTPAALLATALGLHEPQQVAQRRRQLFEAAEAALQAIRASA\n'}
{'generated_text': 'M\nGAAGYTGSLILAALKQNPDIAVYALNRNDEKLKDVCGQYSNLKGQVCDLSNESQVEALLS\nGPRKTVVNLVGPYSFYGSRVLNACIEANCHYIDLTGEVYWIPQMIKQYHHKAVQSGARIV\nPAVGFDSTPAELGSFFAYQQCREKLKKAHLKIKAYTGQSGGASGGTILTMIQHGIENGKI\nLREIRSMANPREPQSDFKHYKEKTFQDGSASFWGVPFVMKGINTPVVQRSASLLKKLYQP\nFDYKQCFSFSTLLNSLFSYIFNAI'}
{'generated_text': 'M\nKFPSLLLDSYLLVFFIFCSLGLYFSPKEFLSKSYTLLTFFGSLLFIVLVAFPYQSAISAS\nKYYYFPFPIQFFDIGLAENKSNFVTSTTILIFCFILFKRQKYISLLLLTVVLIPIISKGN\nYLFIILILNLAVYFFLFKKLYKKGFCISLFLVFSCIFIFIVSKIMYSSGIEGIYKELIFT\nGDNDGRFLIIKSFLEYWKDNLFFGLGPSSVNLFSGAVSGSFHNTYFFIFFQSGILGAFIF\nLLPFVYFFISFFKDNSSFMKLF'}
{'generated_text': 'M\nRRAVGNADLGMEAARYEPSGAYQASEGDGAHGKPHSLPFVALERWQQLGPEERTLAEAVR\nAVLASGQYLLGEAVRRFETAVAAWLGVPFALGVASGTAALTLALRAYGVGPGDEVIVPAI\nTFIATSNAITAAGARPVLVDIDPSTWNMSVASLAARLTPKTKAILAVHLWGQPVDMHPLL\nDIAAQANLAVIEDCAQALGASIAGTKVGTFGDAAAFSFYPTKNMTTGEGGMLVTNARDLA\nQAARMLRSHGQDPPTAYMHSQVGFN'}
Example 2: Finetuning on a set of user-defined sequences
This alternative option to the zero-shot generation permits introducing direction in the generation process. User-defined training and validation files containing the sequences of interest are provided to the model. After a short update of the model’s weights, ProtGPT2 will generate sequences that follow the input properties.
To create the validation and training file, it is necessary to (1) substitute the FASTA headers for each sequence with the expression “< | endoftext | >” and (2) split the originating dataset into training and validation files (this is often done with the ratio 90/10, 80/20 or 95/5). Then, to finetune the model to the input sequences, we can use the example below. Here we show a learning rate of 1e-06, but ideally, the learning rate should be optimised in separate runs. After training, the finetuned model will be stored in the ./output folder. Lastly, ProtGPT2 can generate the tailored sequences as shown in Example 1: |
python run_clm.py --model_name_or_path nferruz/ProtGPT2 --train_file training.txt --validation_file validation.txt --tokenizer_name nferruz/ProtGPT2
--do_train --do_eval --output_dir output --learning_rate 1e-06
The HuggingFace script run_clm.py can be found here: https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py
How to select the best sequences
We’ve observed that perplexity values correlate with AlphaFold2’s plddt. We recommend computing perplexity for each sequence as follows:
sequence='MGEAMGLTQPAVSRAVARLEERVGIRIFNRTARAITLTDEGRRFYEAVAPLLAGIEMHGYR\nVNVEGVAQLLELYARDILAEGRLVQLLPEWAD'
#Convert the sequence to a string like this
#(note we have to introduce new line characters every 60 amino acids,
#following the FASTA file format).
sequence = "<|endoftext|>\nMGEAMGLTQPAVSRAVARLEERVGIRIFNRTARAITLTDEGRRFYEAVAPLLAGIEMHGY\nRVNVEGVAQLLELYARDILAEGRLVQLLPEWAD\n<|endoftext|>"
# ppl function
def calculatePerplexity(sequence, model, tokenizer):
input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0)
input_ids = input_ids.to(device)
with torch.no_grad():
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
return math.exp(loss)
#And hence:
ppl = calculatePerplexity(sequence, model, tokenizer)
Where ppl
is a value with the perplexity for that sequence.
We do not yet have a threshold as to what perplexity value gives a ‘good’ or ‘bad’ sequence, but given the fast inference times, the best is to sample many sequences, order them by perplexity, and select those with the lower values (the lower the better).
Training specs
The model was trained on 128 NVIDIA A100 GPUs for 50 epochs, using a block size of 512 and a total batch size of 1024 (65,536 tokens per batch). The optimizer used was Adam (beta1 = 0.9, beta2 = 0.999) with a learning rate of 1e-3.