Tensor Processing Primitives
Tensor Processing Primitives
Overview
LIBXSMM Application Programming Interface (API) delivers functionality conceptionally in two steps, i.e., “dispatch”, which JIT-compiles a kernel by selecting the optimal placement of instructions for a particular set of operands and returns a function pointer, and “invoke”, which calls that function pointer with the actual operands.
The basic pattern is:
// Get the shape of the operands to build the right operand
op_shape = libxsmm_create_<op>_shape(matrix dimensions, leading dimensions, data types);
// Define a new kernel
libxsmm_xsmmfunction kernel = {NULL};
// Dispatch (JIT compile or retrieve the previously compiled function)
kernel.<op> = libxsmm_dispatch_<op>(op_shape, FLAGS);
// Prepare the execution parameters
libxsmm_<op>_param op_param;
op_param.?.? = op parameters
// Call the kernel
kernel.<op>(&op_param);
The <op>
pattern is different, depending on the operation group you want to call.
There are four operation groups:
meltw_unary
: For element-wise operations with a single input and a single output (ex. ReLU).melw_binary
: For element-wise operations with two inputs and a single output (ex. Add, Sub).meltw_ternary
: For element-wise operations with three inputs and a single output (ex. ??).gemm
orbrgemm
: For matrix multiplication operations with three inputs and a single output (ex. GEMM, BRGEMM).
In any of those operations:
- The output can alias with one of the inputs (ex. accumulation, in-place operations).
- If one input has a lower rank than the other, and the dimensions are compatible, a broadcast is performed before the operation.
- If one input has a smaller type (of the same family) than the other, a (safe) type promotion is performed before the operation.
Unary Operations
libxsmm_meltw_unary_shape libxsmm_create_meltw_unary_shape( const libxsmm_blasint m, const libxsmm_blasint n,
const libxsmm_blasint ldi, const libxsmm_blasint ldo,
const libxsmm_datatype in0_type, const libxsmm_datatype out_type, const libxsmm_datatype comp_type );
libxsmm_meltwfunction_unary libxsmm_dispatch_meltw_unary( const libxsmm_meltw_unary_type unary_type, const libxsmm_meltw_unary_shape unary_shape, const libxsmm_bitfield unary_flags );
Binary Operations
libxsmm_meltw_binary_shape libxsmm_create_meltw_binary_shape( const libxsmm_blasint m, const libxsmm_blasint n,
const libxsmm_blasint ldi, const libxsmm_blasint ldi2, const libxsmm_blasint ldo,
const libxsmm_datatype in0_type, const libxsmm_datatype in1_type, const libxsmm_datatype out_type, const libxsmm_datatype comp_type );
libxsmm_meltwfunction_binary libxsmm_dispatch_meltw_binary( const libxsmm_meltw_binary_type binary_type, const libxsmm_meltw_binary_shape binary_shape, const libxsmm_bitfield binary_flags );
Ternary Operations
libxsmm_meltw_ternary_shape libxsmm_create_meltw_ternary_shape( const libxsmm_blasint m, const libxsmm_blasint n,
const libxsmm_blasint ldi, const libxsmm_blasint ldi2, const libxsmm_blasint ldi3, const libxsmm_blasint ldo,
const libxsmm_datatype in0_type, const libxsmm_datatype in1_type, const libxsmm_datatype in2_type, const libxsmm_datatype out_type, const libxsmm_datatype comp_ type );
libxsmm_meltwfunction_ternary libxsmm_dispatch_meltw_ternary( const libxsmm_meltw_ternary_type ternary_type, const libxsmm_meltw_ternary_shape ternary_shape, const libxsmm_bitfield ternary_flags );
GEMM Operations
libxsmm_gemm_shape libxsmm_create_gemm_shape( const libxsmm_blasint m, const libxsmm_blasint n, const libxsmm_blasint k,
const libxsmm_blasint lda, const libxsmm_blasint ldb, const libxsmm_blasint ldc,
const libxsmm_datatype a_in_type, const libxsmm_datatype b_in_type, const libxsmm_datatype out_type, const libxsmm_datatype comp_type );
/** Query or JIT-generate SMM-kernel general mixed precision options and batch reduce; returns NULL if it does not exist or if JIT is not supported */
libxsmm_gemmfunction libxsmm_dispatch_gemm( const libxsmm_gemm_shape gemm_shape, const libxsmm_bitfield gemm_flags,
const libxsmm_bitfield prefetch_flags );
/** Query or JIT-generate BRGEMM-kernel general mixed precision options and batch reduce; returns NULL if it does not exist or if JIT is not supported */
libxsmm_gemmfunction libxsmm_dispatch_brgemm( const libxsmm_gemm_shape gemm_shape, const libxsmm_bitfield gemm_flags,
const libxsmm_bitfield prefetch_flags, const libxsmm_gemm_batch_reduce_config brgemm_config );
/** Query or JIT-generate BRGEMM-kernel with fusion, general mixed precision options and batch reduce; returns NULL if it does not exist or if JIT is not supported */
libxsmm_gemmfunction_ext libxsmm_dispatch_brgemm_ext( const libxsmm_gemm_shape gemm_shape, const libxsmm_bitfield gemm_flags,
const libxsmm_bitfield prefetch_flags, const libxsmm_gemm_batch_reduce_config brgemm_config,
const libxsmm_gemm_ext_unary_argops unary_argops, const libxsmm_gemm_ext_binary_postops binary_postops );