Open-Omics-Moflow
Open-Omics-Moflow
Open-Omics-MoFlow is a streamlined and optimized version of the MoFlow toolkit, designed to harness the full potential of modern CPUs. It enhances usability through Docker integration and boosts performance with the latest software packages.
Building the Docker Image
Run the following command to build the Docker image:
docker build --build-arg htthp_proxy=$http_proxy --build-arg https_proxy=$https_proxy --build-arg no_proxy=$no_proxy -t moflow .
Setting Up Environment Variables and Directories
To ensure the application runs smoothly, set up the necessary directories and environment variables. Follow these steps:
Step 1: Export Environment Variables
Define environment variables for your folder paths. Replace <your output folder>
, <your Model folder>
, and <your Data Preprocessing folder>
with the desired paths:
export OUTPUT=$PWD/<your output folder>
export MODELS=$PWD/<your Model folder>
export DATA_PREPROCESSING=$PWD/<your Data Preprocessing folder>
Step 2: Create the Required Directories
Here’s an example using standardized folder names. These commands will create the directories, set the environment variables, and adjust permissions:
mkdir -p output models data_preprocessing
export OUTPUT=$PWD/output
export MODELS=$PWD/models
export DATA_PREPROCESSING=$PWD/data_preprocessing
chmod a+w $MODELS $OUTPUT $DATA_PREPROCESSING
Workflow Overview: Data Preprocessing, Model Training, and Experiments
This section outlines the key steps for using the toolkit, including data preprocessing, model training, and running experiments.
1. Data Preprocessing
To generate molecular graphs from SMILES strings
qm9
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
moflow:latest bash -c \
"cd data && python data_preprocess.py --data_name qm9 --data_dir /data_preprocessing"
zinc250k
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
moflow:latest bash -c \
"cd data && python data_preprocess.py --data_name zinc250k --data_dir /data_preprocessing"
2. Model Training
You can train the model by following the instructions provided in the original MoFlow documentation below.
Alternatively, you can skip training and use a pre-trained model. Download the pre-trained model from the following link:
https://drive.google.com/drive/folders/1runxQnF3K_VzzJeWQZUH8VRazAGjZFNF
After downloading, unzip the pre-trained model file and move it to the $MODELS
directory.
mv <downloaded_model_file> $MODELS/
3. Experiments
3.1-Experiment: reconstruction
To reconstruct QM9 dataset:
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --data_name qm9 --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 256 --reconstruct 2>&1 | tee /output/qm9_reconstruct_results.txt"
To reconstruct zinc250k dataset:
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --data_name zinc250k --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 256 --reconstruct 2>&1 | tee /output/zinc250k_reconstruct_results.txt"
3.2-Experiment: Random generation
Random Generation from sampling from latent space, QM9 model
10000 samples * 5 times:
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --data_name qm9 --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 10000 --temperature 0.85 --delta 0.05 --n_experiments 5 --save_fig false --correct_validity true 2>&1 | tee /output/qm9_random_generation.log"
Random Generation from sampling from latent space, zinc250k model
10000 samples * 5 times:
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --data_name zinc250k --data_dir /data_preprocessing --hyperparams-path moflow-params.json --temperature 0.85 --batch-size 10000 --n_experiments 5 --save_fig false --correct_validity true 2>&1 | tee /output/zinc250k_random_generation.log"
3.3-Experiment: Interpolation generation & visualization
Interpolation in the latent space, QM9 model
interpolation between 2 molecules (molecular graphs)
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --data_name qm9 --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.65 --int2point --inter_times 50 --correct_validity true 2>&1 | tee /output/qm9_visualization_int2point.log"
interpolation in a grid of molecules (molecular graphs)
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --data_name qm9 --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.65 --delta 5 --intgrid --inter_times 40 --correct_validity true 2>&1 | tee /output/qm9_visualization_intgrid.log"
Interpolation in the latent space, zinc250k model
interpolation between 2 molecules (molecular graphs)
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --data_name zinc250k --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.8 --delta 0.5 --n_experiments 0 --correct_validity true --int2point --inter_times 10 2>&1 | tee zinc250k_visualization_int2point.log"
interpolation in a grid of molecules (molecular graphs)
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python generate.py --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --data_name zinc250k --data_dir /data_preprocessing --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.8 --delta 5 --n_experiments 0 --correct_validity true --intgrid --inter_times 2 2>&1 | tee /output/zinc250k_visualization_intgrid.log"
3.4-Experiment: Molecular optimization & constrained optimization
Optimizing zinc250k w.r.t QED property
To optimize existing molecules to get novel molecules with optimized QED scores - qm9
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 --data_name qm9 --data_dir /data_preprocessing --property_name qed --topk 2000 --property_model_path qed_model.pt --debug false --topscore 2>&1 | tee /output/qm9_top_qed_optimized.log"
To optimize existing molecules to get novel molecules with optimized QED scores - zinc250k
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --data_name zinc250k --data_dir /data_preprocessing --property_name plogp --topk 800 --property_model_path qed_model.pt --consopt --sim_cutoff 0 2>&1 | tee zinc250k_constrain_optimize_plogp.log"
Illustrations of molecules with top QED
Constrained Optimizing zinc250k w.r.t plogp(or qed) + similarity property
To optimize existing molecules to get novel molecules with optimized plogp scores and constrained similarity - qm9
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir /results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 --data_name qm9 --data_dir /data_preprocessing --property_name plogp --topk 800 --property_model_path qed_model.pt --consopt --sim_cutoff 0 2>&1 | tee /output/qm9_constrain_optimize_plogp.log"
To optimize existing molecules to get novel molecules with optimized plogp scores and constrained similarity - zinc250k
#example
docker run -it \
-v $MODELS:/results \
-v $DATA_PREPROCESSING:/data_preprocessing \
-v $OUTPUT:/output \
moflow:latest bash -c \
"cd mflow && python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir /results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --data_name zinc250k --data_dir /data_preprocessing --property_name plogp --topk 800 --property_model_path qed_model.pt --consopt --sim_cutoff 0 2>&1 | tee /output/zinc250k_constrain_optimize_plogp.log"
The original README content of Moflow follows. #
moflow
Please refer to our paper:
Zang, Chengxi, and Fei Wang. “MoFlow: an invertible flow model for generating molecular graphs.” In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 617-626. 2020.
https://arxiv.org/abs/2006.10137
@inproceedings{zang2020moflow,
title={MoFlow: an invertible flow model for generating molecular graphs},
author={Zang, Chengxi and Wang, Fei},
booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={617--626},
year={2020}
}
0. Install Libs:
conda create --name moflow python pandas matplotlib (conda 4.6.7, python 3.8.5, pandas 1.1.2, matplotlib 3.3.2)
conda activate moflow
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch (pytorch 1.6.0, torchvision 0.7.0)
conda install rdkit (rdkit 2020.03.6)
conda install orderedset (orderset 2.0.3)
conda install tabulate (tabulate 0.8.7)
conda install networkx (networkx 2.5)
conda install scipy (scipy 1.5.0)
conda install seaborn (seaborn 0.11.0)
pip install cairosvg (cairosvg 2.4.2)
pip install tqdm (tqdm 4.50.0)
To clone code from this project, say
git clone https://github.com/calvin-zcx/moflow.git moflow
1. Data Preprocessing
To generate molecular graphs from SMILES strings
cd data
python data_preprocess.py --data_name qm9
python data_preprocess.py --data_name zinc250k
2. Model Training
Training model for QM9 dataset:
cd mflow
python train_model.py --data_name qm9 --batch_size 256 --max_epochs 200 --gpu 0 --debug True --save_dir=results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 --b_n_flow 10 --b_hidden_ch 128,128 --a_n_flow 27 --a_hidden_gnn 64 --a_hidden_lin 128,64 --mask_row_size_list 1 --mask_row_stride_list 1 --noise_scale 0.6 --b_conv_lu 1 2>&1 | tee qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1.log
Training model for zinc250k dataset:
cd mflow
python train_model.py --data_name zinc250k --batch_size 256 --max_epochs 200 --gpu 0 --debug True --save_dir=results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --b_n_flow 10 --b_hidden_ch 512,512 --a_n_flow 38 --a_hidden_gnn 256 --a_hidden_lin 512,64 --mask_row_size_list 1 --mask_row_stride_list 1 --noise_scale 0.6 --b_conv_lu 2 2>&1 | tee zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask.log
Or downloading and using our trained models in
https://drive.google.com/drive/folders/1runxQnF3K_VzzJeWQZUH8VRazAGjZFNF
3. Model Testing
3.1-Experiment: reconstruction
To reconstruct QM9 dataset:
cd mflow
python generate.py --model_dir results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --gpu 0 --data_name qm9 --hyperparams-path moflow-params.json --batch-size 256 --reconstruct 2>&1 | tee qm9_reconstruct_results.txt
### Results
Tips: results can be printed & dumped to a .txt file by "2>&1 | tee qm9_reconstruct_results.txt"
133885 in total, 120803 training data, 13082 testing data, 256 batchsize, train/batchsize 471.88671875
...
iter/total: 468/472, reconstruction_rate:1.0
iter/total: 469/472, reconstruction_rate:1.0
iter/total: 470/472, reconstruction_rate:1.0
iter/total: 471/472, reconstruction_rate:1.0
reconstruction_rate for all the train data:1.0 in 120803
Invertible model! 100% reconstruction!
To reconstruct zinc250k dataset:
cd mflow
python generate.py --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --gpu 0 --data_name zinc250k --hyperparams-path moflow-params.json --batch-size 256 --reconstruct 2>&1 | tee zinc250k_reconstruct_results.txt
Results:
249455 in total, 224568 training data, 24887 testing data, 256 batchsize, train/batchsize 877.21875
...
iter/total: 877/878, reconstruction_rate:1.0
reconstruction_rate for all the train data:1.0 in 224568
Invertible model! 100% reconstruction!
3.2-Experiment: Random generation
Random Generation from sampling from latent space, QM9 model
10000 samples * 5 times:
python generate.py --model_dir results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --gpu 0 --data_name qm9 --hyperparams-path moflow-params.json --batch-size 10000 --temperature 0.85 --delta 0.05 --n_experiments 5 --save_fig false --correct_validity true 2>&1 | tee qm9_random_generation.log
Results
validity: mean=100.00%, sd=0.00%, vals=[100.0, 100.0, 100.0, 100.0, 100.0]
novelty: mean=98.05%, sd=0.12%, vals=[98.07731024763439, 98.11472930738985, 97.88434414668548, 97.95239055880573, 98.21877830331086]
uniqueness: mean=99.26%, sd=0.09%, vals=[99.33999999999999, 99.19, 99.26, 99.14, 99.37]
abs_novelty: mean=97.32%, sd=0.18%, vals=[97.43, 97.32, 97.16, 97.11, 97.6]
abs_uniqueness: mean=99.26%, sd=0.09%, vals=[99.33999999999999, 99.19, 99.26, 99.14, 99.37]
Task random generation done! Time 185.09 seconds, Data: Tue Sep 29 11:20:15 2020
# Above is just one random result. Tuning:
--batch-size for the number of mols to be generated
--temperature for different generation results,
--correct_validity false for results without correction
--save_fig true for figures of generated mols, set batch-size a resoanble number for dump figures
# more details see parameter configuration in generate.py
# Output details are in qm9_random_generation.log
Random Generation from sampling from latent space, zinc250k model
10000 samples * 5 times:
python generate.py --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --gpu 0 --data_name zinc250k --hyperparams-path moflow-params.json --temperature 0.85 --batch-size 10000 --n_experiments 5 --save_fig false --correct_validity true 2>&1 | tee zinc250k_random_generation.log
Results
validity: mean=100.00%, sd=0.00%, vals=[100.0, 100.0, 99.99, 100.0, 100.0]
novelty: mean=100.00%, sd=0.00%, vals=[100.0, 100.0, 100.0, 100.0, 100.0]
uniqueness: mean=99.99%, sd=0.01%, vals=[100.0, 99.98, 100.0, 99.99, 99.99]
abs_novelty: mean=99.99%, sd=0.01%, vals=[100.0, 99.98, 99.99, 99.99, 99.99]
abs_uniqueness: mean=99.99%, sd=0.01%, vals=[100.0, 99.98, 99.99, 99.99, 99.99]
Task1 random generation done! Time 537.13 seconds, Data: Tue Sep 29 11:36:12 2020
# Above is just one random result. Tuning:
--batch-size for the number of mols to be generated
--temperature for different generation results,
--correct_validity false for results without correction
--save_fig true for figures of generated mols, set batch-size a resoanble number for dump figures
# more details see parameter configuration in generate.py
# Output details are in qm9_random_generation.log
3.3-Experiment: Interpolation generation & visualization
Interpolation in the latent space, QM9 model
interpolation between 2 molecules (molecular graphs)
python generate.py --model_dir results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --gpu 0 --data_name qm9 --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.65 --int2point --inter_times 50 --correct_validity true 2>&1 | tee qm9_visualization_int2point.log
interpolation in a grid of molecules (molecular graphs)
python generate.py --model_dir results/qm9_64gnn_128-64lin_1-1mask_0d6noise_convlu1 -snapshot model_snapshot_epoch_200 --gpu 0 --data_name qm9 --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.65 --delta 5 --intgrid --inter_times 40 --correct_validity true 2>&1 | tee tee qm9_visualization_intgrid.log
Interpolation in the latent space, zinc250k model
interpolation between 2 molecules (molecular graphs)
python generate.py --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --gpu 0 --data_name zinc250k --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.8 --delta 0.5 --n_experiments 0 --correct_validity true --int2point --inter_times 10 2>&1 | tee zinc250k_visualization_int2point.log
interpolation in a grid of molecules (molecular graphs)
python generate.py --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask -snapshot model_snapshot_epoch_200 --gpu 0 --data_name zinc250k --hyperparams-path moflow-params.json --batch-size 1000 --temperature 0.8 --delta 5 --n_experiments 0 --correct_validity true --intgrid --inter_times 2 2>&1 | tee zinc250k_visualization_intgrid.log
Some illustrations
3.4-Experiment: Molecular optimization & constrained optimization
Optimizing zinc250k w.r.t QED property
Training an additional MLP from latent space to QED property
python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --gpu 0 --max_epochs 3 --weight_decay 1e-3 --data_name zinc250k --hidden 16, --temperature 1.0 --property_name qed 2>&1 | tee training_optimize_zinc250k_qed.log
# Output: a molecular property prediction model for optimization, say named as qed_model.pt
# e.g. saving qed regression model to: results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask/qed_model.pt
# Train and save model done! Time 477.87 seconds
# Can tune:
# --max_epochs 3
# --weight_decay 1e-3
# --hidden 16
# etc.
Or downloading and using our trained models in
https://drive.google.com/drive/folders/1runxQnF3K_VzzJeWQZUH8VRazAGjZFNF
To optimize existing molecules to get novel molecules with optimized QED scores
python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --gpu 0 --data_name zinc250k --property_name qed --topk 2000 --property_model_path qed_model.pt --debug false --topscore 2>&1 | tee zinc250k_top_qed_optimized.log
# Input: --property_model_path qed_model.pt is the regression model
# Output: dump a ranked list of generated optimized and novel molecules w.r.t qed
Illustrations of molecules with top QED
Constrained Optimizing zinc250k w.r.t plogp(or qed) + similarity property
to train an additional MLP from latent space to plogp property
python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --gpu 0 --max_epochs 3 --weight_decay 1e-2 --data_name zinc250k --hidden 16, --temperature 1.0 --property_name plogp 2>&1 | tee training_optimize_zinc250k_plogp.log
# Output: a molecular property prediction model for optimization, say named as plogp_model.pt
# e.g. saving plogp regression model to: results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask/plogp_model.pt
# Train and save model done! Time 473.74 seconds
# Can tune:
# --max_epochs 3
# --weight_decay 1e-2
# --hidden 16
#etc.
To optimize existing molecules to get novel molecules with optimized plogp scores and constrained similarity
python optimize_property.py -snapshot model_snapshot_epoch_200 --hyperparams_path moflow-params.json --batch_size 256 --model_dir results/zinc250k_512t2cnn_256gnn_512-64lin_10flow_19fold_convlu2_38af-1-1mask --gpu 0 --data_name zinc250k --property_name plogp --topk 800 --property_model_path qed_model.pt --consopt --sim_cutoff 0 2>&1 | tee zinc250k_constrain_optimize_plogp.log
# Input: --property_model_path qed_model.pt or plogp_model.pt is the regression model
--sim_cutoff 0 (or 0.2, 0.4 etc for similarity)
--topk 800 (choose first 800 molecules with worset property values for improving)
# Output:
# Using qed_model.pt for optimizing plogp with
# Because qed and plogp have some correlations, here we use both qed/plogp model for 2 optimization tasks
# --sim_cutoff 0:
# similarity: 0.300610 +/- 0.201674
# Improvement: 8.612461 +/- 5.436995
# success rate: 0.98875
# --sim_cutoff 0.2:
# similarity: 0.434700 +/- 0.196490
# Improvement: 7.057115 +/- 5.041250
# success rate: 0.9675
# --sim_cutoff 0.4:
# similarity: 0.608440 +/- 0.177670
# Improvement: 4.712418 +/- 4.549682
# success rate: 0.8575
# --sim_cutoff 0.6:
# similarity: 0.792550 +/- 0.144577
# Improvement: 2.095266 +/- 2.858545
# success rate: 0.5825
# Using plogp_model.pt for optimizing plogp with
# --sim_cutoff 0:
# similarity: 0.260503 +/- 0.195945
# Improvement: 9.238813 +/- 6.279859
# success rate: 0.9925
# --sim_cutoff 0.2:
# similarity: 0.425541 +/- 0.198020
# Improvement: 7.246221 +/- 5.325543
# success rate: 0.9575
# --sim_cutoff 0.4:
# similarity: 0.625976 +/- 0.189293
# Improvement: 4.504411 +/- 4.712031
# success rate: 0.8425
# --sim_cutoff 0.6:
# similarity: 0.810805 +/- 0.146080
# Improvement: 1.820525 +/- 2.595302
# success rate: 0.565
More configurations please refer to our codes optimize_property.py and the optimization chapter in our paper.