Source code for rl_coach.agents.actor_critic_agent

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

import numpy as np
import scipy.signal

from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent, PolicyGradientRescaler
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import PolicyHeadParameters, VHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, \
    AgentParameters
from rl_coach.exploration_policies.categorical import CategoricalParameters
from rl_coach.exploration_policies.continuous_entropy import ContinuousEntropyParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.single_episode_buffer import SingleEpisodeBufferParameters
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace
from rl_coach.utils import last_sample


[docs]class ActorCriticAlgorithmParameters(AlgorithmParameters): """ :param policy_gradient_rescaler: (PolicyGradientRescaler) The value that will be used to rescale the policy gradient :param apply_gradients_every_x_episodes: (int) The number of episodes to wait before applying the accumulated gradients to the network. The training iterations only accumulate gradients without actually applying them. :param beta_entropy: (float) The weight that will be given to the entropy regularization which is used in order to improve exploration. :param num_steps_between_gradient_updates: (int) Every num_steps_between_gradient_updates transitions will be considered as a single batch and use for accumulating gradients. This is also the number of steps used for bootstrapping according to the n-step formulation. :param gae_lambda: (float) If the policy gradient rescaler was defined as PolicyGradientRescaler.GAE, the generalized advantage estimation scheme will be used, in which case the lambda value controls the decay for the different n-step lengths. :param estimate_state_value_using_gae: (bool) If set to True, the state value targets for the V head will be estimated using the GAE scheme. """ def __init__(self): super().__init__() self.policy_gradient_rescaler = PolicyGradientRescaler.A_VALUE self.apply_gradients_every_x_episodes = 5 self.beta_entropy = 0 self.num_steps_between_gradient_updates = 5000 # this is called t_max in all the papers self.gae_lambda = 0.96 self.estimate_state_value_using_gae = False
class ActorCriticNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters() self.heads_parameters = [VHeadParameters(loss_weight=0.5), PolicyHeadParameters(loss_weight=1.0)] self.optimizer_type = 'Adam' self.clip_gradients = 40.0 self.async_training = True class ActorCriticAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=ActorCriticAlgorithmParameters(), exploration={DiscreteActionSpace: CategoricalParameters(), BoxActionSpace: ContinuousEntropyParameters()}, memory=SingleEpisodeBufferParameters(), networks={"main": ActorCriticNetworkParameters()}) @property def path(self): return 'rl_coach.agents.actor_critic_agent:ActorCriticAgent' # Actor Critic - https://arxiv.org/abs/1602.01783 class ActorCriticAgent(PolicyOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.last_gradient_update_step_idx = 0 self.action_advantages = self.register_signal('Advantages') self.state_values = self.register_signal('Values') self.value_loss = self.register_signal('Value Loss') self.policy_loss = self.register_signal('Policy Loss') # Discounting function used to calculate discounted returns. def discount(self, x, gamma): return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1] def get_general_advantage_estimation_values(self, rewards, values): # values contain n+1 elements (t ... t+n+1), rewards contain n elements (t ... t + n) bootstrap_extended_rewards = np.array(rewards.tolist() + [values[-1]]) # Approximation based calculation of GAE (mathematically correct only when Tmax = inf, # although in practice works even in much smaller Tmax values, e.g. 20) deltas = rewards + self.ap.algorithm.discount * values[1:] - values[:-1] gae = self.discount(deltas, self.ap.algorithm.discount * self.ap.algorithm.gae_lambda) if self.ap.algorithm.estimate_state_value_using_gae: discounted_returns = np.expand_dims(gae + values[:-1], -1) else: discounted_returns = np.expand_dims(np.array(self.discount(bootstrap_extended_rewards, self.ap.algorithm.discount)), 1)[:-1] return gae, discounted_returns def learn_from_batch(self, batch): # batch contains a list of episodes to learn from network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # get the values for the current states result = self.networks['main'].online_network.predict(batch.states(network_keys)) current_state_values = result[0] self.state_values.add_sample(current_state_values) # the targets for the state value estimator num_transitions = batch.size state_value_head_targets = np.zeros((num_transitions, 1)) # estimate the advantage function action_advantages = np.zeros((num_transitions, 1)) if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE: if batch.game_overs()[-1]: R = 0 else: R = self.networks['main'].online_network.predict(last_sample(batch.next_states(network_keys)))[0] for i in reversed(range(num_transitions)): R = batch.rewards()[i] + self.ap.algorithm.discount * R state_value_head_targets[i] = R action_advantages[i] = R - current_state_values[i] elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE: # get bootstraps bootstrapped_value = self.networks['main'].online_network.predict(last_sample(batch.next_states(network_keys)))[0] values = np.append(current_state_values, bootstrapped_value) if batch.game_overs()[-1]: values[-1] = 0 # get general discounted returns table gae_values, state_value_head_targets = self.get_general_advantage_estimation_values(batch.rewards(), values) action_advantages = np.vstack(gae_values) else: screen.warning("WARNING: The requested policy gradient rescaler is not available") action_advantages = action_advantages.squeeze(axis=-1) actions = batch.actions() if not isinstance(self.spaces.action, DiscreteActionSpace) and len(actions.shape) < 2: actions = np.expand_dims(actions, -1) # train result = self.networks['main'].online_network.accumulate_gradients({**batch.states(network_keys), 'output_1_0': actions}, [state_value_head_targets, action_advantages]) # logging total_loss, losses, unclipped_grads = result[:3] self.action_advantages.add_sample(action_advantages) self.unclipped_grads.add_sample(unclipped_grads) self.value_loss.add_sample(losses[0]) self.policy_loss.add_sample(losses[1]) return total_loss, losses, unclipped_grads def get_prediction(self, states): tf_input_state = self.prepare_batch_for_inference(states, "main") return self.networks['main'].online_network.predict(tf_input_state)[1:] # index 0 is the state value