Source code for rl_coach.agents.categorical_dqn_agent

#
# Copyright (c) 2017 Intel Corporation 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union

import numpy as np
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAlgorithmParameters, DQNAgentParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.head_parameters import CategoricalQHeadParameters
from rl_coach.core_types import StateType
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
from rl_coach.schedules import LinearSchedule


class CategoricalDQNNetworkParameters(DQNNetworkParameters):
    def __init__(self):
        super().__init__()
        self.heads_parameters = [CategoricalQHeadParameters()]


[docs]class CategoricalDQNAlgorithmParameters(DQNAlgorithmParameters): """ :param v_min: (float) The minimal value that will be represented in the network output for predicting the Q value. Corresponds to :math:`v_{min}` in the paper. :param v_max: (float) The maximum value that will be represented in the network output for predicting the Q value. Corresponds to :math:`v_{max}` in the paper. :param atoms: (int) The number of atoms that will be used to discretize the range between v_min and v_max. For the C51 algorithm described in the paper, the number of atoms is 51. """ def __init__(self): super().__init__() self.v_min = -10.0 self.v_max = 10.0 self.atoms = 51
class CategoricalDQNExplorationParameters(EGreedyParameters): def __init__(self): super().__init__() self.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.evaluation_epsilon = 0.001 class CategoricalDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm = CategoricalDQNAlgorithmParameters() self.exploration = CategoricalDQNExplorationParameters() self.network_wrappers = {"main": CategoricalDQNNetworkParameters()} @property def path(self): return 'rl_coach.agents.categorical_dqn_agent:CategoricalDQNAgent' # Categorical Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf class CategoricalDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.z_values = np.linspace(self.ap.algorithm.v_min, self.ap.algorithm.v_max, self.ap.algorithm.atoms) def distribution_prediction_to_q_values(self, prediction): return np.dot(prediction, self.z_values) # prediction's format is (batch,actions,atoms) def get_all_q_values_for_states(self, states: StateType): q_values = None if self.exploration_policy.requires_action_values(): q_values = self.get_prediction(states, outputs=[self.networks['main'].online_network.output_heads[0].q_values]) return q_values def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType): actions_q_values, softmax_probabilities = None, None if self.exploration_policy.requires_action_values(): outputs = [self.networks['main'].online_network.output_heads[0].q_values, self.networks['main'].online_network.output_heads[0].softmax] actions_q_values, softmax_probabilities = self.get_prediction(states, outputs=outputs) return actions_q_values, softmax_probabilities def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # for the action we actually took, the error is calculated by the atoms distribution # for all other actions, the error is 0 distributional_q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # add Q value samples for logging self.q_values.add_sample(self.distribution_prediction_to_q_values(TD_targets)) # select the optimal actions for the next state target_actions = np.argmax(self.distribution_prediction_to_q_values(distributional_q_st_plus_1), axis=1) m = np.zeros((batch.size, self.z_values.size)) batches = np.arange(batch.size) # an alternative to the for loop. 3.7x perf improvement vs. the same code done with for looping. # only 10% speedup overall - leaving commented out as the code is not as clear. # tzj_ = np.fmax(np.fmin(batch.rewards() + (1.0 - batch.game_overs()) * self.ap.algorithm.discount * # np.transpose(np.repeat(self.z_values[np.newaxis, :], batch.size, axis=0), (1, 0)), # self.z_values[-1]), # self.z_values[0]) # # bj_ = (tzj_ - self.z_values[0]) / (self.z_values[1] - self.z_values[0]) # u_ = (np.ceil(bj_)).astype(int) # l_ = (np.floor(bj_)).astype(int) # m_ = np.zeros((batch.size, self.z_values.size)) # np.add.at(m_, [batches, l_], # np.transpose(distributional_q_st_plus_1[batches, target_actions], (1, 0)) * (u_ - bj_)) # np.add.at(m_, [batches, u_], # np.transpose(distributional_q_st_plus_1[batches, target_actions], (1, 0)) * (bj_ - l_)) for j in range(self.z_values.size): tzj = np.fmax(np.fmin(batch.rewards() + (1.0 - batch.game_overs()) * self.ap.algorithm.discount * self.z_values[j], self.z_values[-1]), self.z_values[0]) bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0]) u = (np.ceil(bj)).astype(int) l = (np.floor(bj)).astype(int) m[batches, l] += (distributional_q_st_plus_1[batches, target_actions, j] * (u - bj)) m[batches, u] += (distributional_q_st_plus_1[batches, target_actions, j] * (bj - l)) # total_loss = cross entropy between actual result above and predicted result for the given action # only update the action that we have actually done in this transition TD_targets[batches, batch.actions()] = m # update errors in prioritized replay buffer importance_weights = batch.info('weight') if isinstance(self.memory, PrioritizedExperienceReplay) else None result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets, importance_weights=importance_weights) total_loss, losses, unclipped_grads = result[:3] # TODO: fix this spaghetti code if isinstance(self.memory, PrioritizedExperienceReplay): errors = losses[0][np.arange(batch.size), batch.actions()] self.call_memory('update_priorities', (batch.info('idx'), errors)) return total_loss, losses, unclipped_grads