Source code for rl_coach.agents.cil_agent

#
# Copyright (c) 2017 Intel Corporation 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

from rl_coach.agents.imitation_agent import ImitationAgent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import RegressionHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AgentParameters, MiddlewareScheme, NetworkParameters, AlgorithmParameters
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.memories.non_episodic.balanced_experience_replay import BalancedExperienceReplayParameters


[docs]class CILAlgorithmParameters(AlgorithmParameters): """ :param state_key_with_the_class_index: (str) The key of the state dictionary which corresponds to the value that will be used to control the class index. """ def __init__(self): super().__init__() self.state_key_with_the_class_index = 'high_level_command'
class CILNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium) self.heads_parameters = [RegressionHeadParameters()] self.optimizer_type = 'Adam' self.batch_size = 32 self.replace_mse_with_huber_loss = False self.create_target_network = False class CILAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=CILAlgorithmParameters(), exploration=EGreedyParameters(), memory=BalancedExperienceReplayParameters(), networks={"main": CILNetworkParameters()}) @property def path(self): return 'rl_coach.agents.cil_agent:CILAgent' # Conditional Imitation Learning Agent: https://arxiv.org/abs/1710.02410 class CILAgent(ImitationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.current_high_level_control = 0 def choose_action(self, curr_state): self.current_high_level_control = curr_state[self.ap.algorithm.state_key_with_the_class_index] return super().choose_action(curr_state) def extract_action_values(self, prediction): return prediction[self.current_high_level_control].squeeze() def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() target_values = self.networks['main'].online_network.predict({**batch.states(network_keys)}) branch_to_update = batch.states([self.ap.algorithm.state_key_with_the_class_index])[self.ap.algorithm.state_key_with_the_class_index] for idx, branch in enumerate(branch_to_update): target_values[branch][idx] = batch.actions()[idx] result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys)}, target_values) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads