Source code for rl_coach.agents.mmc_agent

#
# Copyright (c) 2017 Intel Corporation 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

import numpy as np

from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters


[docs]class MixedMonteCarloAlgorithmParameters(DQNAlgorithmParameters): """ :param monte_carlo_mixing_rate: (float) The mixing rate is used for setting the amount of monte carlo estimate (full return) that will be mixes into the single-step bootstrapped targets. """ def __init__(self): super().__init__() self.monte_carlo_mixing_rate = 0.1
class MixedMonteCarloAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm = MixedMonteCarloAlgorithmParameters() self.memory = EpisodicExperienceReplayParameters() @property def path(self): return 'rl_coach.agents.mmc_agent:MixedMonteCarloAgent' class MixedMonteCarloAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.mixing_rate = agent_parameters.algorithm.monte_carlo_mixing_rate def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # for the 1-step, we use the double-dqn target. hence actions are taken greedily according to the online network selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1) # TD_targets are initialized with the current prediction so that we will # only update the action that we have actually done in this transition q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) total_returns = batch.n_step_discounted_rewards() for i in range(batch.size): one_step_target = batch.rewards()[i] + \ (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * \ q_st_plus_1[i][selected_actions[i]] monte_carlo_target = total_returns[i] TD_targets[i, batch.actions()[i]] = (1 - self.mixing_rate) * one_step_target + \ self.mixing_rate * monte_carlo_target result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads