Source code for rl_coach.agents.naf_agent

#
# Copyright (c) 2017 Intel Corporation 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Union

import numpy as np

from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import NAFHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, AgentParameters, \
    NetworkParameters

from rl_coach.core_types import ActionInfo, EnvironmentSteps
from rl_coach.exploration_policies.ou_process import OUProcessParameters
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.spaces import BoxActionSpace


class NAFNetworkParameters(NetworkParameters):
    def __init__(self):
        super().__init__()
        self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
        self.middleware_parameters = FCMiddlewareParameters()
        self.heads_parameters = [NAFHeadParameters()]
        self.optimizer_type = 'Adam'
        self.learning_rate = 0.001
        self.async_training = True
        self.create_target_network = True


[docs]class NAFAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() self.num_consecutive_training_steps = 5 self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1) self.rate_for_copying_weights_to_target = 0.001
class NAFAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=NAFAlgorithmParameters(), exploration=OUProcessParameters(), memory=EpisodicExperienceReplayParameters(), networks={"main": NAFNetworkParameters()}) @property def path(self): return 'rl_coach.agents.naf_agent:NAFAgent' # Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf class NAFAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.l_values = self.register_signal("L") self.a_values = self.register_signal("Advantage") self.mu_values = self.register_signal("Action") self.v_values = self.register_signal("V") self.TD_targets = self.register_signal("TD targets") def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # TD error = r + discount*v_st_plus_1 - q_st v_st_plus_1 = self.networks['main'].target_network.predict( batch.next_states(network_keys), self.networks['main'].target_network.output_heads[0].V, squeeze_output=False, ) TD_targets = np.expand_dims(batch.rewards(), -1) + \ (1.0 - np.expand_dims(batch.game_overs(), -1)) * self.ap.algorithm.discount * v_st_plus_1 self.TD_targets.add_sample(TD_targets) result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys), 'output_0_0': batch.actions(len(batch.actions().shape) == 1) }, TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads def choose_action(self, curr_state): if type(self.spaces.action) != BoxActionSpace: raise ValueError('NAF works only for continuous control problems') # convert to batch so we can run it through the network tf_input_state = self.prepare_batch_for_inference(curr_state, 'main') naf_head = self.networks['main'].online_network.output_heads[0] action_values = self.networks['main'].online_network.predict(tf_input_state, outputs=naf_head.mu, squeeze_output=False) # get the actual action to use action = self.exploration_policy.get_action(action_values) # get the internal values for logging outputs = [naf_head.mu, naf_head.Q, naf_head.L, naf_head.A, naf_head.V] result = self.networks['main'].online_network.predict( {**tf_input_state, 'output_0_0': action_values}, outputs=outputs ) mu, Q, L, A, V = result # store the q values statistics for logging self.q_values.add_sample(Q) self.l_values.add_sample(L) self.a_values.add_sample(A) self.mu_values.add_sample(mu) self.v_values.add_sample(V) action_info = ActionInfo(action=action, action_value=Q) return action_info