Source code for rl_coach.agents.qr_dqn_agent

#
# Copyright (c) 2017 Intel Corporation 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from copy import copy
from typing import Union

import numpy as np

from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNNetworkParameters, DQNAlgorithmParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.head_parameters import QuantileRegressionQHeadParameters
from rl_coach.core_types import StateType
from rl_coach.schedules import LinearSchedule


class QuantileRegressionDQNNetworkParameters(DQNNetworkParameters):
    def __init__(self):
        super().__init__()
        self.heads_parameters = [QuantileRegressionQHeadParameters()]
        self.learning_rate = 0.00005
        self.optimizer_epsilon = 0.01 / 32


[docs]class QuantileRegressionDQNAlgorithmParameters(DQNAlgorithmParameters): """ :param atoms: (int) the number of atoms to predict for each action :param huber_loss_interval: (float) One of the huber loss parameters, and is referred to as :math:`\kapa` in the paper. It describes the interval [-k, k] in which the huber loss acts as a MSE loss. """ def __init__(self): super().__init__() self.atoms = 200 self.huber_loss_interval = 1 # called k in the paper
class QuantileRegressionDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm = QuantileRegressionDQNAlgorithmParameters() self.network_wrappers = {"main": QuantileRegressionDQNNetworkParameters()} self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.exploration.evaluation_epsilon = 0.001 @property def path(self): return 'rl_coach.agents.qr_dqn_agent:QuantileRegressionDQNAgent' # Quantile Regression Deep Q Network - https://arxiv.org/pdf/1710.10044v1.pdf class QuantileRegressionDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.quantile_probabilities = np.ones(self.ap.algorithm.atoms) / float(self.ap.algorithm.atoms) def get_q_values(self, quantile_values): return np.dot(quantile_values, self.quantile_probabilities) # prediction's format is (batch,actions,atoms) def get_all_q_values_for_states(self, states: StateType): if self.exploration_policy.requires_action_values(): quantile_values = self.get_prediction(states) actions_q_values = self.get_q_values(quantile_values) else: actions_q_values = None return actions_q_values # prediction's format is (batch,actions,atoms) def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType): actions_q_values, softmax_probabilities = None, None if self.exploration_policy.requires_action_values(): outputs = copy(self.networks['main'].online_network.outputs) outputs.append(self.networks['main'].online_network.output_heads[0].softmax) quantile_values, softmax_probabilities = self.get_prediction(states, outputs) actions_q_values = self.get_q_values(quantile_values) return actions_q_values, softmax_probabilities def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # get the quantiles of the next states and current states next_state_quantiles, current_quantiles = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # add Q value samples for logging self.q_values.add_sample(self.get_q_values(current_quantiles)) # get the optimal actions to take for the next states target_actions = np.argmax(self.get_q_values(next_state_quantiles), axis=1) # calculate the Bellman update batch_idx = list(range(batch.size)) TD_targets = batch.rewards(True) + (1.0 - batch.game_overs(True)) * self.ap.algorithm.discount \ * next_state_quantiles[batch_idx, target_actions] # get the locations of the selected actions within the batch for indexing purposes actions_locations = [[b, a] for b, a in zip(batch_idx, batch.actions())] # calculate the cumulative quantile probabilities and reorder them to fit the sorted quantiles order cumulative_probabilities = np.array(range(self.ap.algorithm.atoms + 1)) / float(self.ap.algorithm.atoms) # tau_i quantile_midpoints = 0.5*(cumulative_probabilities[1:] + cumulative_probabilities[:-1]) # tau^hat_i quantile_midpoints = np.tile(quantile_midpoints, (batch.size, 1)) sorted_quantiles = np.argsort(current_quantiles[batch_idx, batch.actions()]) for idx in range(batch.size): quantile_midpoints[idx, :] = quantile_midpoints[idx, sorted_quantiles[idx]] # train result = self.networks['main'].train_and_sync_networks({ **batch.states(network_keys), 'output_0_0': actions_locations, 'output_0_1': quantile_midpoints, }, TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads