Source code for nlp_architect.data.cdc_resources.embedding.embed_elmo

# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

import logging
import pickle
from typing import List

import numpy as np

from nlp_architect.common.cdc.mention_data import MentionDataLight
from nlp_architect.utils.embedding import ELMoEmbedderTFHUB

logger = logging.getLogger(__name__)


[docs]class ElmoEmbedding(object): def __init__(self): logger.info("Loading Elmo Embedding module") self.embeder = ELMoEmbedderTFHUB() self.cache = dict() logger.info("Elmo Embedding module lead successfully")
[docs] def get_head_feature_vector(self, mention: MentionDataLight): if mention.mention_context is not None and mention.mention_context: sentence = " ".join(mention.mention_context) return self.apply_get_from_cache(sentence, True, mention.tokens_number) sentence = mention.tokens_str return self.apply_get_from_cache(sentence, False, [])
[docs] def apply_get_from_cache(self, sentence: str, context: bool = False, indexs: List[int] = None): if context and indexs is not None: if sentence in self.cache: elmo_full_vec = self.cache[sentence] else: elmo_full_vec = self.embeder.get_vector(sentence.split()) self.cache[sentence] = elmo_full_vec elmo_ret_vec = self.get_mention_vec_from_sent(elmo_full_vec, indexs) else: if sentence in self.cache: elmo_ret_vec = self.cache[sentence] else: elmo_ret_vec = self.get_elmo_avg(sentence.split()) self.cache[sentence] = elmo_ret_vec return elmo_ret_vec
[docs] def get_avrg_feature_vector(self, tokens_str): if tokens_str is not None: return self.apply_get_from_cache(tokens_str) return None
[docs] def get_elmo_avg(self, sentence): sentence_embedding = self.embeder.get_vector(sentence) return np.mean(sentence_embedding, axis=0)
[docs] @staticmethod def get_mention_vec_from_sent(sent_vec, indexs): if len(indexs) > 1: elmo_ret_vec = np.mean(sent_vec[indexs[0] : indexs[-1] + 1], axis=0) else: elmo_ret_vec = sent_vec[indexs[0]] return elmo_ret_vec
[docs]class ElmoEmbeddingOffline(object): def __init__(self, dump_file): logger.info("Loading Elmo Offline Embedding module") if dump_file is not None: with open(dump_file, "rb") as out: self.embeder = pickle.load(out) else: logger.warning("Elmo Offline without loaded embeder!") logger.info("Elmo Offline Embedding module lead successfully")
[docs] def get_head_feature_vector(self, mention: MentionDataLight): embed = None if mention.mention_context is not None and mention.mention_context: sentence = " ".join(mention.mention_context) if sentence in self.embeder: elmo_full_vec = self.embeder[sentence] return ElmoEmbedding.get_mention_vec_from_sent(elmo_full_vec, mention.tokens_number) sentence = mention.tokens_str if sentence in self.embeder: embed = self.embeder[sentence] return embed
[docs] def get_avrg_feature_vector(self, tokens_str): embed = None if tokens_str in self.embeder: embed = self.embeder[tokens_str] return embed