Source code for nlp_architect.data.cdc_resources.relations.computed_relation_extraction

# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
import difflib
import logging
import sys
from typing import List, Set

from nlp_architect.common.cdc.mention_data import MentionDataLight
from nlp_architect.data.cdc_resources.relations.relation_extraction import RelationExtraction
from nlp_architect.data.cdc_resources.relations.relation_types_enums import RelationType
from nlp_architect.utils.string_utils import StringUtils

logger = logging.getLogger(__name__)


[docs]class ComputedRelationExtraction(RelationExtraction): """ Extract Relation between two mentions according to computation and rule based algorithms """
[docs] def extract_all_relations( self, mention_x: MentionDataLight, mention_y: MentionDataLight ) -> Set[RelationType]: """ Try to find if mentions has anyone or more of the relations this class support Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: Set[RelationType]: One or more of: RelationType.EXACT_STRING, RelationType.FUZZY_FIT, RelationType.FUZZY_HEAD_FIT, RelationType.SAME_HEAD_LEMMA, RelationType.SAME_HEAD_LEMMA_RELAX """ relations = set() mention_x_str = mention_x.tokens_str mention_y_str = mention_y.tokens_str if StringUtils.is_pronoun(mention_x_str.lower()) or StringUtils.is_pronoun( mention_y_str.lower() ): relations.add(RelationType.NO_RELATION_FOUND) return relations exact_rel = self.extract_exact_string(mention_x, mention_y) fuzzy_rel = self.extract_fuzzy_fit(mention_x, mention_y) fuzzy_head_rel = self.extract_fuzzy_head_fit(mention_x, mention_y) same_head_rel = self.extract_same_head_lemma(mention_x, mention_y) if exact_rel != RelationType.NO_RELATION_FOUND: relations.add(exact_rel) if fuzzy_rel != RelationType.NO_RELATION_FOUND: relations.add(fuzzy_rel) if fuzzy_head_rel != RelationType.NO_RELATION_FOUND: relations.add(fuzzy_head_rel) if same_head_rel != RelationType.NO_RELATION_FOUND: relations.add(same_head_rel) if len(relations) == 0: relations.add(RelationType.NO_RELATION_FOUND) return relations
[docs] def extract_sub_relations( self, mention_x: MentionDataLight, mention_y: MentionDataLight, relation: RelationType ) -> RelationType: """ Check if input mentions has the given relation between them Args: mention_x: MentionDataLight mention_y: MentionDataLight relation: RelationType Returns: RelationType: relation in case mentions has given relation or RelationType.NO_RELATION_FOUND otherwise """ mention_x_str = mention_x.tokens_str mention_y_str = mention_y.tokens_str if StringUtils.is_pronoun(mention_x_str.lower()) or StringUtils.is_pronoun( mention_y_str.lower() ): return RelationType.NO_RELATION_FOUND if relation == RelationType.EXACT_STRING: return self.extract_exact_string(mention_x, mention_y) if relation == RelationType.FUZZY_FIT: return self.extract_fuzzy_fit(mention_x, mention_y) if relation == RelationType.FUZZY_HEAD_FIT: return self.extract_fuzzy_head_fit(mention_x, mention_y) if relation == RelationType.SAME_HEAD_LEMMA: is_same_lemma = self.extract_same_head_lemma(mention_x, mention_y) if is_same_lemma != RelationType.NO_RELATION_FOUND: return relation return RelationType.NO_RELATION_FOUND
[docs] @staticmethod def extract_same_head_lemma( mention_x: MentionDataLight, mention_y: MentionDataLight ) -> RelationType: """ Check if input mentions has same head lemma relation Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: RelationType.SAME_HEAD_LEMMA or RelationType.NO_RELATION_FOUND """ if ( StringUtils.is_preposition(mention_x.mention_head_lemma) or StringUtils.is_preposition(mention_y.mention_head_lemma) or StringUtils.is_determiner(mention_x.mention_head_lemma) or StringUtils.is_determiner(mention_y.mention_head_lemma) ): return RelationType.NO_RELATION_FOUND if mention_x.mention_head_lemma == mention_y.mention_head_lemma: return RelationType.SAME_HEAD_LEMMA return RelationType.NO_RELATION_FOUND
[docs] @staticmethod def extract_fuzzy_head_fit( mention_x: MentionDataLight, mention_y: MentionDataLight ) -> RelationType: """ Check if input mentions has fuzzy head fit relation Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: RelationType.FUZZY_HEAD_FIT or RelationType.NO_RELATION_FOUND """ if StringUtils.is_preposition( mention_x.mention_head_lemma.lower() ) or StringUtils.is_preposition(mention_y.mention_head_lemma.lower()): return RelationType.NO_RELATION_FOUND mention_y_tokens = mention_y.tokens_str.split() mention_x_tokens = mention_x.tokens_str.split() if mention_x.mention_head in mention_y_tokens or mention_y.mention_head in mention_x_tokens: return RelationType.FUZZY_HEAD_FIT return RelationType.NO_RELATION_FOUND
[docs] @staticmethod def extract_fuzzy_fit(mention_x: MentionDataLight, mention_y: MentionDataLight) -> RelationType: """ Check if input mentions has fuzzy fit relation Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: RelationType.FUZZY_FIT or RelationType.NO_RELATION_FOUND """ try: from num2words import num2words except (AttributeError, ImportError): logger.error( "num2words is not installed, please install nlp_architect with [all] package. " + "for example: pip install nlp_architect[all]" ) sys.exit() relation = RelationType.NO_RELATION_FOUND mention1_str = mention_x.tokens_str mention2_str = mention_y.tokens_str if difflib.SequenceMatcher(None, mention1_str, mention2_str).ratio() * 100 >= 90: relation = RelationType.FUZZY_FIT return relation # Convert numbers to words x_words = [ num2words(int(w)).replace("-", " ") if w.isdigit() else w for w in mention1_str.split() ] y_words = [ num2words(int(w)).replace("-", " ") if w.isdigit() else w for w in mention2_str.split() ] fuzzy_result = ( difflib.SequenceMatcher(None, " ".join(x_words), " ".join(y_words)).ratio() * 100 >= 85 ) if fuzzy_result: relation = RelationType.FUZZY_FIT return relation
[docs] @staticmethod def extract_exact_string( mention_x: MentionDataLight, mention_y: MentionDataLight ) -> RelationType: """ Check if input mentions has exact string relation Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: RelationType.EXACT_STRING or RelationType.NO_RELATION_FOUND """ relation = RelationType.NO_RELATION_FOUND mention1_str = mention_x.tokens_str mention2_str = mention_y.tokens_str if StringUtils.is_preposition(mention1_str.lower()) or StringUtils.is_preposition( mention2_str.lower() ): return relation if mention1_str.lower() == mention2_str.lower(): relation = RelationType.EXACT_STRING return relation
[docs] @staticmethod def get_supported_relations() -> List[RelationType]: """ Return all supported relations by this class Returns: List[RelationType] """ return [ RelationType.EXACT_STRING, RelationType.FUZZY_FIT, RelationType.FUZZY_HEAD_FIT, RelationType.SAME_HEAD_LEMMA, ]