Source code for nlp_architect.data.cdc_resources.wordnet.wordnet_online

# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

import nltk
from nltk.corpus import wordnet as wn

from nlp_architect.data.cdc_resources.data_types.wn.wordnet_page import WordnetPage
from nlp_architect.utils.string_utils import StringUtils


[docs]class WordnetOnline(object): def __init__(self): self.cache = dict() nltk.download("wordnet")
[docs] def get_pages(self, mention): if mention.tokens_str in self.cache: return self.cache[mention.tokens_str] head_synonyms, head_names_derivationally = self.extract_synonyms_and_derivation( mention.mention_head ) head_lemma_synonyms, head_lemma_derivationally = self.extract_synonyms_and_derivation( mention.mention_head_lemma ) clean_phrase = StringUtils.normalize_str(mention.tokens_str) all_clean_words_synonyms = self.all_clean_words_synonyms(clean_phrase) wordnet_page = WordnetPage( mention.tokens_str, clean_phrase, mention.mention_head, mention.mention_head_lemma, head_synonyms, head_lemma_synonyms, head_names_derivationally, head_lemma_derivationally, all_clean_words_synonyms, ) self.cache[mention.tokens_str] = wordnet_page return wordnet_page
[docs] @staticmethod def extract_synonyms_and_derivation(word): lemma_names = set() derivationally_related_forms = set() for synset in wn.synsets(word): for lemma in synset.lemmas(): lemma_name = lemma.name().replace("_", " ") if not StringUtils.is_stop(lemma_name.lower()): lemma_names.add(lemma_name) derivationally_related_forms.update( [ lem.name().replace("_", " ") for lem in lemma.derivationally_related_forms() if not StringUtils.is_stop(lem.name().lower()) ] ) return lemma_names, derivationally_related_forms
[docs] @staticmethod def all_clean_words_synonyms(clean_phrase): words = clean_phrase.split() return [ set( [ lemma.lower().replace("_", " ") for synset in wn.synsets(w) for lemma in synset.lemma_names() if not StringUtils.is_stop(lemma.lower()) ] ) for w in words ]