# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
# pylint: disable=invalid-name
import numpy as np
# Things that were changed from the original:
# - Reformatted code and variable names to conform with PEP8
# - Added legal header
# This file contains routines from Lisbon Machine Learning summer school.
# The code is freely distributed under a MIT license. https://github.com/LxMLS/lxmls-toolkit/
[docs]def parse_proj(scores, gold=None):
# pylint: disable=too-many-locals
"""
Parse using Eisner's algorithm.
"""
nr, nc = np.shape(scores)
if nr != nc:
raise ValueError("scores must be a squared matrix with nw+1 rows")
N = nr - 1 # Number of words (excluding root).
# Initialize CKY table.
complete = np.zeros([N + 1, N + 1, 2]) # s, t, direction (right=1).
incomplete = np.zeros([N + 1, N + 1, 2]) # s, t, direction (right=1).
complete_backtrack = -np.ones([N + 1, N + 1, 2], dtype=int) # s, t, direction (right=1).
incomplete_backtrack = -np.ones([N + 1, N + 1, 2], dtype=int) # s, t, direction (right=1).
incomplete[0, :, 0] -= np.inf
# Loop from smaller items to larger items.
for k in range(1, N + 1):
for s in range(N - k + 1):
t = s + k
# First, create incomplete items.
# left tree
incomplete_vals0 = (
complete[s, s:t, 1]
+ complete[(s + 1) : (t + 1), t, 0]
+ scores[t, s]
+ (0.0 if gold is not None and gold[s] == t else 1.0)
)
incomplete[s, t, 0] = np.max(incomplete_vals0)
incomplete_backtrack[s, t, 0] = s + np.argmax(incomplete_vals0)
# right tree
incomplete_vals1 = (
complete[s, s:t, 1]
+ complete[(s + 1) : (t + 1), t, 0]
+ scores[s, t]
+ (0.0 if gold is not None and gold[t] == s else 1.0)
)
incomplete[s, t, 1] = np.max(incomplete_vals1)
incomplete_backtrack[s, t, 1] = s + np.argmax(incomplete_vals1)
# Second, create complete items.
# left tree
complete_vals0 = complete[s, s:t, 0] + incomplete[s:t, t, 0]
complete[s, t, 0] = np.max(complete_vals0)
complete_backtrack[s, t, 0] = s + np.argmax(complete_vals0)
# right tree
complete_vals1 = incomplete[s, (s + 1) : (t + 1), 1] + complete[(s + 1) : (t + 1), t, 1]
complete[s, t, 1] = np.max(complete_vals1)
complete_backtrack[s, t, 1] = s + 1 + np.argmax(complete_vals1)
# value = complete[0][N][1]
heads = [-1 for _ in range(N + 1)] # -np.ones(N+1, dtype=int)
_backtrack_eisner(incomplete_backtrack, complete_backtrack, 0, N, 1, 1, heads)
value_proj = 0.0
for m in range(1, N + 1):
h = heads[m]
value_proj += scores[h, m]
return heads
# pylint: disable=too-many-arguments
def _backtrack_eisner(incomplete_backtrack, complete_backtrack, s, t, direction, complete, heads):
"""
Backtracking step in Eisner's algorithm.
- incomplete_backtrack is a (NW+1)-by-(NW+1) numpy array indexed by a start
position, an end position, and a direction flag (0 means left, 1 means
right). This array contains the arg-maxes of each step in the Eisner
algorithm when building *incomplete* spans.
- complete_backtrack is a (NW+1)-by-(NW+1) numpy array indexed by a start
position, an end position, and a direction flag (0 means left, 1 means
right). This array contains the arg-maxes of each step in the Eisner
algorithm when building *complete* spans.
- s is the current start of the span
- t is the current end of the span
- direction is 0 (left attachment) or 1 (right attachment)
- complete is 1 if the current span is complete, and 0 otherwise
- heads is a (NW+1)-sized numpy array of integers which is a placeholder
for storing the head of each word.
"""
if s == t:
return
if complete:
r = complete_backtrack[s][t][direction]
if direction == 0:
_backtrack_eisner(incomplete_backtrack, complete_backtrack, s, r, 0, 1, heads)
_backtrack_eisner(incomplete_backtrack, complete_backtrack, r, t, 0, 0, heads)
return
_backtrack_eisner(incomplete_backtrack, complete_backtrack, s, r, 1, 0, heads)
_backtrack_eisner(incomplete_backtrack, complete_backtrack, r, t, 1, 1, heads)
return
r = incomplete_backtrack[s][t][direction]
if direction == 0:
heads[s] = t
_backtrack_eisner(incomplete_backtrack, complete_backtrack, s, r, 1, 1, heads)
_backtrack_eisner(incomplete_backtrack, complete_backtrack, r + 1, t, 0, 1, heads)
return
heads[t] = s
_backtrack_eisner(incomplete_backtrack, complete_backtrack, s, r, 1, 1, heads)
_backtrack_eisner(incomplete_backtrack, complete_backtrack, r + 1, t, 0, 1, heads)
return