Source code for nlp_architect.nn.tensorflow.python.keras.callbacks

# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import tensorflow as tf

from nlp_architect.utils.metrics import get_conll_scores


[docs]class ConllCallback(tf.keras.callbacks.Callback): """ A Tensorflow(Keras) Conlleval evaluator. Runs the conlleval script for given x and y inputs. Prints Conlleval F1 score on the end of each epoch. Args: x: features matrix y: labels matrix y_vocab (dict): int-to-str labels lexicon batch_size (:obj:`int`, optional): batch size """ def __init__(self, x, y, y_vocab, batch_size=1): super(ConllCallback, self).__init__() self.x = x self.y = y self.y_vocab = {v: k for k, v in y_vocab.items()} self.bsz = batch_size
[docs] def on_epoch_end(self, epoch, logs=None): predictions = self.model.predict(self.x, batch_size=self.bsz) stats = get_conll_scores(predictions, self.y, self.y_vocab) print() print("Conll eval: \n{}".format(stats))