nlp_architect.pipelines package
Submodules
nlp_architect.pipelines.spacy_bist module
-
class
nlp_architect.pipelines.spacy_bist.
SpacyBISTParser
(verbose=False, spacy_model='en', bist_model=None)[source] Bases:
object
Main class which handles parsing with Spacy-BIST parser.
Parameters: - verbose (bool, optional) – Controls output verbosity.
- spacy_model (str, optional) – Spacy model to use
- https ((see) – //spacy.io/api/top-level#spacy.load).
- bist_model (str, optional) – Path to a .model file to load. Defaults pre-trained model’.
-
dir
= PosixPath('/home/runner/nlp-architect/cache/bist-pretrained')
-
parse
(doc_text, show_tok=True, show_doc=True)[source] Parse a raw text document.
Parameters: - doc_text (str) –
- show_tok (bool, optional) – Specifies whether to include token text in output.
- show_doc (bool, optional) – Specifies whether to include document text in output.
Returns: The annotated document.
Return type:
nlp_architect.pipelines.spacy_np_annotator module
-
class
nlp_architect.pipelines.spacy_np_annotator.
NPAnnotator
(model, word_vocab, char_vocab, chunk_vocab, batch_size: int = 32)[source] Bases:
object
Spacy based NP annotator - uses models.SequenceChunker model for annotation
Parameters: - model (SequenceChunker) – a chunker model
- word_vocab (Vocabulary) – word-id vocabulary of the model
- char_vocab (Vocabulary) – char id vocabulary of words of the model
- chunk_vocab (Vocabulary) – chunk tag vocabulary of the model
- batch_size (int, optional) – inference batch size
-
classmethod
load
(model_path: str, parameter_path: str, batch_size: int = 32, use_cudnn: bool = False)[source] Load a NPAnnotator annotator
Parameters: - model_path (str) – path to trained model
- parameter_path (str) – path to model parameters
- batch_size (int, optional) – inference batch_size
- use_cudnn (bool, optional) – use gpu for inference (cudnn cells)
Returns: NPAnnotator class with loaded model
-
class
nlp_architect.pipelines.spacy_np_annotator.
SpacyNPAnnotator
(model_path, settings_path, spacy_model='en', batch_size=32, use_cudnn=False)[source] Bases:
object
Simple Spacy pipe with NP extraction annotations